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Abstract

I study social learning in networks with information acquisition and choice. Rational
agents act in sequence, observe the choices of their connections, and acquire information via
sequential search. I characterize equilibria of the model by linking agents’ search policies to the
probability that they select the best action. If search costs are small enough, an improvement
principle holds. This allows me to show that asymptotic learning obtains in sufficiently con-
nected networks in which information paths are identifiable. When search costs are bounded
away from zero, even a weaker notion of long-run learning fails, except in particular networks.
Networks in which agents observe random numbers of immediate predecessors share many
properties with the complete network, including the rate of convergence and the probability
of wrong herds. Transparency of past histories has short-run implications for welfare and
efficiency. Simply letting agents observe the shares of earlier choices reduces inefficiency and
welfare losses.
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1 Introduction
When characterizing conditions under which societies efficiently aggregate dispersed information
or herd on suboptimal behavior, it is standard to assume that agents are endowed with exogenous
information. Yet, in most circumstances of interest, information is endogenous—agents choosing
how much and what information to acquire at a cost. If agents can choose how much to learn
at a cost, do they have the incentive to collect the relevant information? On the one hand, it is
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tempting to free-ride on the information from others’ experiences, so that social learning encourages
the exploitation of others’ wisdom, increasing the chances of wrong herds. On the other hand,
the possibility of wrong herds fosters independent exploration, reducing the odds of suboptimal
behavior. How do others’ experiences and the structure of social ties affect this exploitation-
exploration trade-off and the gathering and diffusion of new knowledge? If agents can choose what
to learn about, how do others’ experiences and the structure of social ties affect agents’ information
choice? Should agents inquire (more) about the more popular actions, the more recent actions,
or neither should guide their information acquisition and choice problems? When do societies
ultimately settle on the best course of action or, in contrast, suboptimal behavior persists?

I develop a model of social learning in networks with information acquisition and choice to
answer these questions. Countably many rational agents act in sequence. Each chooses between
two actions. The quality of actions are i.i.d. draws about which agents are initially uninformed.
Agents wish to select the action with the highest quality. Each agent observes a subset of earlier
agents, the agent’s neighborhood. Neighborhoods are drawn from a joint distribution, the network
topology. The framework allows for arbitrary correlation among neighborhoods. After observing
his neighbors’ actions, but before selecting his own, an agent engages in costly sequential search.
Searching perfectly reveals the quality of the sampled action, but comes at a cost (i.i.d. across
agents). After sampling an action, the agent decides whether to sample the second alternative or
not. Finally, the agent selects an action from those he has sampled. Individual neighborhoods and
sampling decisions remain unobserved.

This is a dynamic game of incomplete information. The network topology shapes agents’ pos-
sibility to learn from others’ actions (social information); the search technology shapes agents’
possibility to acquire private information. Social and private information interact: others’ actions
inform what agents choose to learn about and how much information they acquire. I characterize
conditions on network topologies and search technologies for positive long-run learning outcomes to
obtain or fail and uncover which learning principles are (not) at play in such a setting. Moreover, I
provide insights on the speed and efficiency of social learning and on how social information affect
agents’ acquisition and choice of private information.

I consider two learning metrics. The first is asymptotic learning, which occurs if the probability
that agents take the best action converges to one as the size of the society grows large. If search
costs are not bounded away from zero, asymptotic learning obtains in networks where arbitrarily
long information paths occur almost surely and are identifiable. Roughly, asymptotic learning
obtains if free experimentation is possible, the network is sufficiently connected, and individual
neighborhood realizations do not lead agents astray about the broader network realization.

To identify sufficient conditions for asymptotic learning, I develop an improvement principle
(hereafter, IP). The IP captures the idea that improvements upon imitation are sufficient to select
the best action in the long run. It is based on the following heuristic. Upon observing his neighbors,
each agent chooses one of them to rely on and determines his optimal search policy regardless of
what others have done. Consider an agent, say n, and his chosen neighbor, say b. Unless b samples
the best action with probability one at the first search, b’s expected additional gain from the second
search is positive. Thus, if search costs are not bounded away from zero, b samples both actions
with positive probability and then takes the best one. Since n finds it optimal to sample first the
action taken by b, there is a strict improvement in the probability of sampling the best action at the
first search that agent n has over his chosen neighbor. If information paths are identifiable, agents
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pick the correct neighbor to rely on; if, moreover, information paths are long enough, improvements
last until agents select the best action at the first search. Thus, asymptotic learning obtains.

For search costs that are bounded away from zero, I introduce a new metric of social learning,
maximal learning. Maximal learning occurs if, in the long run, agents take the best action with
the same probability as an “expert”—a single agent with the lowest possible search cost type and
no social information. If search costs are not bounded away from zero, maximal and asymptotic
learning coincide. Otherwise, maximal learning is (weakly) weaker than asymptotic learning and
represents the best outcome a society can aim for when arbitrarily low cost draws cannot happen.

Maximal learning obtains if late-moving agents observe only the choices of an infinite but
proportionally vanishing set of isolated agents (i.e., agents with no neighbors). Since the choices
of isolated agents are independent of each other, the share of earlier choices is sufficient for late-
moving agents to sample at the first search the action an expert would take. Depending on the
primitives of the model, maximal and asymptotic learning may coincide even if arbitrarily low cost
draws cannot happen. Thus, the result also shows that search cost that are not bounded away from
zero are not always necessary for asymptotic learning. The positive result, however, is limited to
such exceptional networks. In fact, if search costs are bounded away from zero, maximal learning
fails in most common deterministic and stochastic networks. Positive learning results are fragile
with respect to perturbations of the search technology because of two reasons. First, search costs
that are bounded away from zero disrupt the IP, as improvements upon imitation are precluded to
late moving agents; thus, societies that rely on improvements upon imitation as learning principle
perform worse than an expert. Second, the information structure of my model precludes large-
sample and martingale convergence arguments, as no social belief that forms a martingale is of
some use when characterizing equilibrium behavior. This feature undermines societies’ ability to
learn by aggregating the information that large samples of agents’ choices contain.

The learning model I analyze is non-standard for two reasons. First, agents seek to maximize
the value of their sequential search program, rather than the probability of picking the action
with the highest quality, which is what matters for the long-run outcome. With costly search, the
two problems are not equivalent. Second, large-sample and martingale convergence arguments, a
standard learning principle to aggregate dispersed information, have no bite in the present setup.
Nevertheless, I am able to connect agents’ optimization to the probability that they select the best
action. This link makes the analysis of long-run learning outcomes possible. In particular, I connect
an agent’s optimal sampling sequence and timing to stop the search process to the probability that
some of the agents he is directly or indirectly linked to (the agent’s personal subnetwork) has
sampled both actions. Since sampling both actions allows agents to assess their relative quality,
the latter probability provides a lower bound for the agent’s probability of selecting the best action.

The equilibrium characterization sheds light on how social information affects an agent’s sam-
pling sequence and the timing to stop the search process. Different network structures make
different actions salient and result in different sampling sequences. In some cases, such as in the
complete network, under uniform random sampling of at most two agents from the past, or in net-
works where agents observe the choices of possibly correlated random numbers of most immediate
predecessors (hereafter, OIP networks), agents always find it optimal to sample first the action
taken by their most recent neighbor.1 In contrast, agents who observe only isolated agents always

1To fix ideas, let 1 ≤ `n < n; agents n− `n, . . . , n− 1 are the `n most immediate predecessors of agent n. Note
that the complete network is the OIP network where each agent n observes his n− 1 most immediate predecessors.

3



find it optimal to sample first the more popular action in their neighborhood. In more general
networks, however, no informational monotonicity property links an agent’s sampling sequence to
the actions of his most recent neighbors or to the share of actions he observes. In such cases, neither
the most recent nor the most popular actions determine an agent’s information choice problem.

For fixed quality of the first action sampled, the expected additional gain from the second
search—and so the incentive to explore—is larger for isolated agents than for agents who can
exploit the information revealed by their neighbors’ choices. For isolated agents, moreover, the
expected additional gain from the second search is decreasing in the quality of the first action
sampled. In contrast, such gain need not be monotone in the quality of the first action sampled
for an agent, say n, with nonempty neighborhood. This is so because the gain depends on the
probability that some of the agents in n’s personal subnetwork has sampled both actions. This
probability need not be monotone in the quality of the first action sampled by n. On the one
hand, a high-quality action suggests that some agent in the personal subnetwork has sampled both
actions, discarding the one with low quality to adopt the superior one. On the other hand, precisely
this effect implies that the incentives to acquire information about the second action (exploit social
information) decrease (increase) with the quality of the first action sampled. This is the central
trade-off in the setting I study. Depending on the primitives of the model, either force may prevail.

The analysis also sheds light on the speed and efficiency of social learning, equilibrium welfare,
and the role of transparency of past histories. The probability of wrong herds, the speed of learning,
and long-run welfare and efficiency properties (i.e., welfare and efficiency when future payoffs are
discounted with factor δ → 1) are the same whether each agent observes all prior choices, only the
previous choice, or the choices of possibly correlated random numbers of immediate predecessors.
Put differently, these equilibrium outcomes are the same in all OIP networks and coincide with
those in the complete network; that is, they are not affected by transparency of past histories, the
density of connections, and their correlation pattern. Though the result is striking, the intuition
behind is simple. In OIP networks, each agent is directly or indirectly linked to all prior agents;
thus, a given agent’s personal subnetwork is the same and consists of all his predecessors. Since an
agent’s search policy depends on the probability that some of the agents in his personal subnetwork
has sampled both actions, the probability that a given agent selects the best action must be the
same across all OIP networks and must coincide with that in the complete network.

Reducing transparency of past histories, however, leads to inefficient duplication of costly search.
This is so because agents who do not observe all prior choices fail to recognize when an action is
revealed to be inferior by some of their predecessors’ choices, thus, engaging in overeager search. I
compare welfare in the complete network (the most efficient OIP network) with that in the network
where agents only observe their most immediate predecessor (the least efficient OIP network). The
welfare difference remains significant in the short and medium run (i.e., for any δ < 1). Simple
policy interventions, such as letting agents observe the shares of prior choices in addition to their
neighbors’ choices, restore in all OIP networks the same welfare as that in the complete network.

Finally, the density of connections has implications for the speed of learning. In particular,
whereas convergence to the best action is faster than a polynomial rate in OIP networks, it is only
faster than a logarithmic rate under uniform random sampling of one agent from the past. Intu-
itively, learning is slower under uniform random sampling because in such networks the cardinality
of agents’ personal subnetworks grows at a slower rate than in OIP networks, and so does the
probability that at least one agent in the personal subnetworks has sampled both actions.
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This paper contributes to both the economic theory of social learning and its applications. The
theoretical novelty is to analyze costly information acquisition and choice in a model of rational
learning over general networks. By and large, the literature on social learning in networks neglects
the complexity introduced by costly acquisition of private information. Prior work either focuses
on particular network structures, or posits simple individual decision rules. Yet, it acknowledges
the importance of a general analysis within the Bayesian benchmark (see, e.g., Sadler (2014) and
Golub and Sadler (2016)).

The information acquisition technology—sequential search, which has received much attention
in the applied literature—relates the model to a variety of applications. Many real-world in-
formation acquisition and choice problems are well-modeled by sequential search—in particular,
situations where taking an action requires learning about its quality, functioning, or availability.
Examples are widespread: firms need to be aware of a new technology and assess its merits before
adoption; consumers gather information before purchasing an expensive durable good; investors
try to understand different financial instruments before making an investment decision; patients
inquire into alternative treatments before undergoing an invasive surgery. Social learning and the
structure of social ties play a central role in all these phenomena, as documented by a rich empir-
ical literature (among many others, Bandiera and Rasul (2006) and Conley and Udry (2010) for
technology adoption, Trusov, Bucklin and Pauwels (2009) and Moretti (2011) for product choice
and the diffusion of new products, Banerjee, Chandrasekhar, Duflo and Jackson (2013) and Duflo
and Saez (2002, 2003) for the diffusion of financial innovations, investment decisions, and financial
planning, Sorensen (2006) for the choice of health plans, and Dupas (2014) and Zhang (2010) for
the adoption of health products and the decision to undergo a surgery). Understanding where
information comes from in such settings, the interplay between social information and individual
incentives to acquire and choose private information, and its ultimate effects on long-run outcomes
is crucial to gain insights into the process of social learning that go beyond its statistical properties.

A compelling motivation for my model comes from the economics of social media and Internet
search and, in particular, from the large evidence that people’s (online) behavior—what they share,
what they search on search engines, the order in which they do so, and their resulting purchase or
adoption decisions—is often inspired by what they observe on social media. For instance, suppose
we need to decide which of two recently released comedies to watch. The two movies have a cast
and a direction of comparable reputation so that it is ex-ante unclear which one is better. However,
we observe on Facebook the movie our friends watched through their check-ins or the Facebook
pages they liked, but only have a vague idea of whom they observed in turn. Our friends’ decisions
give us a first impression of what film is likely to be the best one (for evidence that users learn from
their contacts’ check-ins, see, e.g., Qiu, Shi and Whinston (2018)). We then search on Google for
this movie to learn where and when it is played and to read experts’ reviews. Looking for movie
times and reading reviews takes time and effort, and this idiosyncratic cost depends on factors that
are our private information (whether we are in a rush, how much time we can divert from other
activities, etc.). Depending on movie times, reviews, and our opportunity cost, we either watch
the movie we first learned about, or invest more time searching for information about the other
option.2

2As we need to know where the movie is played and whether it is available at the desired time, we cannot watch
a movie we have not searched for. Moreover, reading a movie’s review or checking its schedule reveals information
about (the quality of) that movie, but does not directly reveal anything about the other movie.
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More broadly, others’ choices and aggregate sales rankings may guide the order in which con-
sumers search for new products and influence which items become popular in the long run. For
example, people observe on Spotify what songs their connections listen to, and on Flickr the cam-
eras that have been used to take the pictures that other users share. In such cases, the order in
which individuals search for a new song or camera is not random, but informed by the choices
of their connections, and so is their resulting purchase decision. This paper sheds light on the
implications of such behavior for social learning, product diffusion and demand, and on the forces
that may lead consumers to herd on inferior items.

Related Literature. The classic sequential social learning model (hereafter, SSLM) originates
with the seminal papers of Banerjee (1992), Bikhchandani, Hirshleifer and Welch (1992), and Smith
and Sørensen (2000). In the SSLM, agents wish to match their action with an unknown state of
nature and observe both a free private signal and the actions of all prior agents before making their
choice. The private signal is informative about the relative quality of all alternatives. Acemoglu,
Dahleh, Lobel and Ozdaglar (2011) and Lobel and Sadler (2015) generalize the SSLM by allowing
for partial observability of prior actions according to a stochastic network topology.3 They develop
an IP for the SSLM and identify connectedness and identifiability of information paths as key
network properties for improvements upon imitation to lead to positive learning outcomes. I model
the observation structure following Acemoglu et al. (2011) and Lobel and Sadler (2015). I find that
improvements upon imitation are a key learning principle also in my setting, thus extending the
scope of the IP to a new informational environment, which significantly departs from that of the
SSLM.4 The information structure of my model, however, precludes large-sample and martingale
convergence arguments which, in contrast, play a central role in the SSLM.

My paper joins a recent and growing literature on costly acquisition of private information in
social learning settings, including Burguet and Vives (2000), Chamley (2004), Hendricks, Sorensen
and Wiseman (2012), Ali (2018) and Mueller-Frank and Pai (2016) (hereafter, MFP). None of these
papers focuses on the role of the network structure. When each agent observes all prior actions, my
model reduces to that of MFP. MFP study asymptotic learning but not maximal learning, which
is new to my paper. They find that asymptotic learning occurs in the complete network if and
only if search costs are not bounded away from zero. This equivalence no longer holds in general
networks. My analysis identifies network properties under which search costs that are not bounded
away from zero are (i) sufficient, (ii) necessary and sufficient, (iii) not necessary, and (iv) not
sufficient for asymptotic learning. Moreover, I uncover which learning principles are (not) at play
in such collective search environments. Many properties of the complete network, however, extend
to all networks in which agents observe the choices of random numbers of immediate predecessors.

In Burguet and Vives (2000), Chamley (2004), and Ali (2018), agents choose how informative
a signal to acquire at a cost which depends on the chosen informativeness. While I focus on some
search cost types obtaining perfect signals in a discrete action space, they study noisy signals with
a continuous (or general, in Ali (2018)) action space. In Hendricks et al. (2012) agents sequentially
decide whether to purchase a product or not. Agents have heterogeneous preferences, but identical

3Smith and Sørensen (2014) introduce neighbor sampling in the SSLM but, differently than in my model, they
assume that individuals ignore the identity of the agents they observe.

4The informational monotonicity we make use of in the IP is related to the (expected) welfare improvement
principle in Banerjee and Fudenberg (2004) and Smith and Sørensen (2014), and to the imitation principle in Bala
and Goyal (1998) and Gale and Kariv (2003).
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search cost, at which they can acquire a perfect signal about their value for the product. Agents
only observe the aggregate purchase history. In these papers, agents can choose how much to learn,
but not what to learn about. Moreover, substantial differences among informational environments
prevent a direct comparison of our results and require different tools to analyze the learning process.

Board and Meyer-ter-Vehn (2018) study observational learning on social networks in which
agents choose whether to adopt an innovation. Agents observe whether their neighbors have
adopted the innovation and decide whether to gather private information about its quality via
costly inspection. Whereas I mostly focus on long-run outcomes, they focus on the impact of
network structure on learning dynamics and diffusion at each point in time.

My model relates to those of sequential information acquisition of Wald (1947), Weitzman
(1979), and Moscarini and Smith (2001), where a single decision maker dynamically chooses how
much information to acquire before taking an action. Weitzman (1979) considers a sequential search
environment where an agent faces a bandit problem, each arm representing a distinct alternative
with a random prize, and characterizes the optimal sampling sequence and the optimal timing to
stop the search process. Each agent in my model faces the same problem and trade-off between
exploration (sampling the second action) and exploitation (taking the action believed to be the
best according to his social information).5 More broadly, my work connects to a recent literature
that studies the dynamics of information choice in learning environments: Sethi and Yildiz (2016,
2018), Che and Mierendorff (2017), Mayskaya (2017), Fudenberg, Strack and Strzalecki (2018),
Liang, Mu and Syrgkanis (2018), Liang and Mu (2018), and Zhong (2018).

Salish (2017) and Sadler (2017) study learning in networks where finitely many agents ac-
quire private information by experimenting with a two-armed bandit and observe their neighbors’
experimentation. Agents interact repeatedly over time, and so the strategic component of their
interaction is more involved than in my setting. However, this comes at a cost. Sadler (2017) allows
for complex networks, but agents follow a boundedly rational decision rule. In Salish (2017) agents
are rational, but a sharp characterization only obtains for particular network structures. In con-
trast, I accommodate both for rational behavior and general network topologies. Perego and Yuksel
(2016) study a model of learning where a continuum of Bayesian agents repeatedly choose between
learning from one’s own experimentation or learning from others’ experiences. Connections are
heterogeneous across agents and peer-to-peer exchange of information is subject to frictions. The
authors characterize how frictions and heterogeneity in connections affect the creation and diffusion
of knowledge in equilibrium, but do not focus on network properties other than connectivity.

A few papers consider costly observability of past histories in the SSLM (e.g., Kultti and Mi-
ettinen (2006, 2007), Celen and Hyndman (2012), Song (2016), and Nei (2016)). In these papers
private information is free, while which agents’ actions to observe is endogenously determined. In
contrast, I study costly acquisition of private information in exogenous network structures.

The literature on social learning in networks is larger than the work surveyed here. I refer to
Goyal (2007, 2011), Jackson (2008), Vives (2010), Acemoglu and Ozdaglar (2011), Mobius and
Rosenblat (2014), and Golub and Sadler (2016) for excellent accounts of the field.

Road Map. In Section 2, I describe the model. In Section 3, I define asymptotic learning,
characterize equilibrium strategies, and discuss how social information affects the acquisition and

5The trade-off between exploration and exploitation is the distinctive feature of bandit problems. I refer to
Bergemann and Välimäki (2008) for a survey of bandit problems in economics.
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the choice of private information. In Section 4, I establish the improvement principle and provide
sufficient and necessary conditions for asymptotic learning. In Section 5, I introduce maximal
learning, present the main results with respect to this metric, and discuss the limitations of the
improvement principle and of large-sample arguments. In Section 6, I present the main results on
the rate of convergence, welfare, and efficiency. In Section 7, I conclude. Supporting examples are
in Appendix A and formal proofs are in Appendix B.

2 Model

2.1 Collective Search Environment

Agents and Actions. A countably infinite set of agents, indexed by n ∈ N := {1, 2, . . . },
sequentially select a single action each, with agent n acting at time n. Each agent has to choose
one of two possible alternatives in the set of available actions X := {0, 1}, which is identical across
agents. Restricting attention to two actions simplifies the exposition, but does not affect the results.
A typical element of X is denoted by x, while the action agent n selects is denoted by an. Calendar
time is common knowledge and the order of moves exogenous.

State Process. Actions differ in their qualities, but are ex-ante homogeneous. I denote with qx

the quality of action x. Qualities q0 and q1 are i.i.d. draws from a probability measure PQ over
Q ⊆ R+ := {s ∈ R : s ≥ 0}. The state of the world ω := (q0, q1) consists of the realized quality of
the two actions and is drawn once and for all at time zero. The state space is Ω := Q × Q, with
product measure PΩ := PQ×PQ. This formulation captures finite, and countably and uncountably
infinite state spaces. The resulting probability space, (Ω,FΩ,PΩ), is the state process of the model
and is common knowledge. Whenever convenient, I denote the state process with (Q,FQ,PQ).

Agents wish to select the action with the highest quality. To do so, they have access to two
sources of information: social information, which is derived from observing a subset of other agents’
past actions, and private information, which is endogenously acquired by costly sequential search.
The next two paragraphs describe the two processes in detail.

Network Topology. Agents need not observe all past actions, but only those of a subset of agents,
as defined by the structure of the social network, as first modeled in Acemoglu et al. (2011) and
Lobel and Sadler (2015). The set of agents whose actions agent n observes, denoted by B(n), is
called n’s neighborhood. Since agents only observes actions taken previously, B(n) ∈ 2Nn , where
2Nn denotes the power set of Nn := {m ∈ N : m < n}. Neighborhoods B(n) are random variables
generated via a probability measure Q on the product space B := ∏

n∈N 2Nn . Given a measure
Q on B, I refer to the resulting probability space (B,FB,Q) as the network topology. Particular
realizations of the random variables B(n) are denoted by Bn.

This formulation allows for stochastic network topologies with arbitrary correlations between
agents’ neighborhoods, as well as for independent neighborhoods (when B(n)’s are generated by
probability measures Qn’s on 2Nn and the draws from each Qn are independent from each other)
and deterministic network topologies (when Q is a Dirac distribution on a single element of B).

The sequence of neighborhood realizations describes a social network of connections between
the agents. The network topology is common knowledge, whereas the realized neighborhood Bn is
agent n’s private information. If n′ ∈ Bn, then n not only observes the choice an′ , but also knows
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the identity of this agent (equivalently, the time at which this agent has acted). Crucially, however,
n does not necessarily observe Bn′ or the actions of the agents in Bn′ .

Neighborhood realizations are independent of the actions’ qualities and the realizations of pri-
vate search costs (to be introduced momentarily).

This framework nests most of the network topologies commonly observed in the data and
studied in the literature. Among many others, it accommodates for observation of all previous
agents (complete network), random sampling from the past, observation of the most recent M ≥ 1
individuals, networks with influential groups of agents, and the popular preferential attachment
and small-world networks (see Acemoglu et al. (2011) and Lobel and Sadler (2015)).

Search Technology. Private information about the quality of the two actions is acquired through
costly sequential search with recall. After observing his neighborhood B(n) and the actions of the
agents in B(n), agent n decides which action s1

n ∈ X to sample first.6 Sampling an action perfectly
reveals its quality to the agent. I denote the quality of the first action sampled by agent n as qs1

n
.

After observing qs1
n
, agent n decides whether to sample the remaining action, s2

n = ¬s1
n, where

¬s1
n denotes the action in X not sampled initially, or to discontinue searching, s2

n = ns. That is,
s2
n ∈ {¬s1

n, ns}. Let Sn denote the set of actions agent n samples. After sampling has stopped, the
agent chooses an action an. Agents can only select an action they sampled, that is an ∈ Sn. For
a single agent, the search problem is a version of Weitzman (1979). When each agent observes all
past actions, my model reduces to that of Mueller-Frank and Pai (2016).

For simplicity, the first action is sampled at no cost, while sampling the second action involves
a cost cn ∈ C ⊆ R+.7 Search costs cn are i.i.d. across agents, are drawn from a commonly known
probability measure PC over C, with associated CDF FC , and are independent of the network
topology and the quality of the two actions. I refer to the probability space (C,FC ,PC), together
with the sequential search rule, denoted by R, as the search technology of the model. An agent’s
search cost and sampling decisions are his private information. That is, for all n ∈ N, agent n’s
search cost cn and sampling decisions are not observed by later moving agents.

Payoffs. The net utility of agent n is given by the difference between the quality of the action he
takes and the search cost he incurs. That is,

Un(Sn, an, cn, ω) := qan − cn(|Sn| − 1).

Collective Search Environment. A collective search environment, denoted by S, consists of the
set of agents N, a state process (Ω,FΩ,PΩ), a network topology (B,FB,Q), and a search technology
{(C,FC ,PC),R}. That is,

S := {N, (Ω,FΩ,PΩ), (B,FB,Q), {(C,FC ,PC),R}} .

2.2 Information and Strategies

Each collective search environment S results in a dynamic game of incomplete information (hence-
forth, game of social learning). For each agent n, I distinguish three different information sets. The

6If neighborhoods are correlated, neighborhood realizations convey information about whom an agent’s neighbors
are likely to have observed.

7It is equivalent if the two searches cost the same amount cn, but each agent has to take an action, i.e. he cannot
abstain, and therefore must conduct at least one search.
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first information set I1(n) corresponds to n’s information prior to sampling any action; it consists
of his search cost cn, his neighborhood B(n), and all actions of agents in B(n):

I1(n) := {cn, B(n), ak for all k ∈ B(n)} .

The set I2(n) is the information set agent n has after sampling the first action, that is

I2(n) :=
{
cn, B(n), ak for all k ∈ B(n), qs1

n

}
,

which also includes the quality of the first action sampled. Finally, Ia(n) corresponds to the
information set of agent n once his search ends:

Ia(n) := {cn, B(n), ak for all k ∈ B(n), {qs : s ∈ Sn}} .

I1(n), I2(n), and Ia(n) are random variables whose realizations I denote by I1
n, I

2
n, and Ian. I

refer to I1(n) and I2(n) as agent n’s first and second search stage information sets, and to Ia(n)
as agent n’s choice stage information set. The classes of all possible search stage and choice stage
information sets of agent n are denoted by Irn, for r ∈ {1, 2}, and Ian.

A strategy for agent n is an ordered triple of mappings σn := (σ1
n, σ

2
n, σ

a) with components

σ1
n : I1

n → ∆({0, 1}),

σ2
n : I2

n →
({
¬s1

n, ns
})
,

and σan : Ian → ∆(Sn).

A strategy profile is a sequence of strategies σ := (σn)n∈N. Let σ−n := (σ1, . . . , σn−1, σn+1, . . . )
denote the strategies of all agents other than n. Given a collective search environment S and a
strategy profile σ, the sequence of actions (an)n∈N is a stochastic process with probability measure Pσ
generated by the state process, the network topology, the search technology, and the mixed strategy
of each agent. Formally, for a fixed σ, the sequence (an)n∈N is determined by the realization in the
probability space8 Y := Ω × B × C∞ ×D∞. Here, C∞ is the set of possible realizations of search
costs for each agent, (D,FD, λ) is a probability space determining the possible mixed strategy
realizations of a given agent, and Ω and B have been introduced before.

2.3 Equilibrium Notion

The solution concept is the set of perfect Bayesian equilibria of the game of social learning.

Definition 1. Fix a collective search environment S. A strategy profile σ := (σn)n∈N is a perfect
Bayesian equilibrium of the corresponding game of social learning if, for all n ∈ N, σn is an optimal
policy for agent n’s sequential search and action choice problems given other agents’ strategies σ−n.

Hereafter, I use the term equilibria to mean perfect Bayesian equilibria. I denote with ΣS the
set of equilibria of the game of social learning corresponding to S.

In any collective search environment S, given a strategy profile for the agents acting prior to n,
and a realization of n’s information sets Irn ∈ Irn for r ∈ {1, 2} and Ian ∈ Ian, the decision problems

8Formal notation about the corresponding event space and probability measure is standard, and thus omitted.
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of agent n at the search and the choice stage are discrete choice problems. Therefore, they have
a well-defined solution that only requires randomizing according to some mixed strategy in case
of indifference at some stage (see Section 3.2.2 for a characterization of individual equilibrium
decisions). For given criteria to break ties, an inductive argument shows that the set of equilibria
ΣS is nonempty. I note the existence of equilibrium here.

Proposition 1. For any collective search environment S, the set of equilibria ΣS is nonempty.

In general, however, the game of social learning admits multiple equilibria since some agents
may be indifferent between the available alternatives at the search or choice stage.

Hereafter, whenever a strategy profile or an equilibrium σ is fixed and no confusion arises, I
denote agent n’s decisions according to his (equilibrium) strategy σn := (σ1

n, σ
2
n, σ

a
n) as

s1
n := σ1

n, s2
n := σ2

n, an := σan.

3 Long-Run Learning and Equilibrium Strategies
In this section, I define asymptotic learning, which is the first long-run learning metric considered
in the paper. Then, I characterize equilibrium strategies by relating individual sequential search
policies to the probability that agents select the best action. Finally, I discuss how social information
affects the acquisition of private information.

3.1 Asymptotic Learning: Definition

The first goal is to characterize conditions under which agents eventually select the action with the
highest quality with probability one. This represents a natural benchmark for the social learning
process—the same limiting outcome that would occur if each agent directly observed the private
search decisions of all prior agents and (at least) one of these agents actually sampled both actions.

Definition 2. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. Asymp-
totic learning occurs in equilibrium σ if

lim
n→∞

Pσ
(
an ∈ arg max

x∈X
qx

)
= 1.

Studying asymptotic learning requires understanding how the quantity

Pσ
(
an ∈ arg max

x∈X
qx

)
(1)

evolves over time. At the same time, agents use their information to optimize the value of their
own sequential search program

Un(Sn, an, cn, ω) := qan − cn(|Sn| − 1),

a problem which need not be equivalent to maximizing the quantity in (1) or the ex ante ex-
pected utility.9 This discrepancy raises some conceptual challenges one needs to address before

9An analogous remark applies to maximal learning, introduced in Section 5.
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establishing the main results. To this purpose, the next subsection characterizes equilibrium
search policies by linking the dynamics of agents’ optimization to the dynamics of the quantity
Pσ(an ∈ arg max x∈X qx), thus making the analysis of long-run outcomes possible.

3.2 Equilibrium Strategies

Before characterizing equilibrium strategies, I recall the notion of personal subnetwork from Lobel
and Sadler (2015) and introduce the concept of personal subnetwork relative to action x ∈ X.

3.2.1 Preliminaries

Definition 3. Fix a collective search environment S, a strategy profile σ, and an agent n ∈ N:

(a) Agent m < n is a member of agent n’s personal subnetwork if there exists a sequence of
agents, starting with m and terminating with n, such that each member of the sequence is
contained in the neighborhood of the next. The personal subnetwork of agent n is denoted by
B̂(n).

(b) Agent m < n is a member of agent n’s personal subnetwork relative to action x ∈ X if
m ∈ B̂(n) and am = x. The personal subnetwork of agent n relative to action x ∈ X is
denoted by B̂(n, x).

Agent n’s personal subnetwork represents the set of all agents in the network that are connected
to n, either directly or indirectly, as of the time n must make a decision. Intuitively, the personal
subnetwork of agent n consists of those agents that are, either directly or indirectly (through
neighbors, neighbors of neighbors, neighbors of neighbors of neighbors, and so on) observed by
agent n. Agent n’s personal subnetwork relative to action x consists of those agents that are, either
directly or indirectly, observed by agent n to choose action x. Clearly, B̂(n) = B̂(n, 0) ∪ B̂(n, 1).
Particular realizations of the random variables B̂(n) and B̂(n, x) are denoted by B̂n and B̂n,x.

3.2.2 Characterization of Equilibrium Sequential Search Policies

Fix a collective search environment S. In the corresponding game of social learning, equilibrium
behavior is characterized as follows.

Choice stage. An agent’s optimal policy at the choice stage is mechanical: if he only sampled
one action, he takes that action; if he sampled both, he takes the action with the highest quality,
randomizing according to his mixed strategy if the two actions have the same quality. Therefore,
I omit the formal notation.

To characterize equilibrium search policies, I first consider the search problem of an agent with
no social connections and then move to the problem of an agent who observes others’ choices.

Search policy for an agent with empty neighborhood. Consider an agent n who does not
observe any other agent, that is with Bn = ∅. This is, for instance, the case of the first agent. Fix
a strategy profile σ−n for agents other than n. Since an agent’s neighborhood is independent of
the qualities of the two actions and the choices of previous agents, in the absence of any additional
information the marginal distributions of the qualities of the two actions are identical (and equal to
the prior PQ). According to Weitzman (1979)’s optimal search rule, either action might be sampled
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first. Therefore, the strategy of such agent n is described by two non-negative functions, π0
n(·)

and π1
n(·), such that π0

n(I1
n) + π1

n(I1
n) = 1 for all I1

n ∈ I1
n with Bn = ∅. Here, πxn(I1

n) denotes the
probability that agent n with information set I1

n samples action x first.
Suppose the action agent n samples first, s1

n, has quality qs1
n
. Agent n will only sample the

second action if his search cost cn is smaller than the expected additional gain of sampling the
second action, denoted by t∅(qs1

n
), where the function t∅ : Q→ R+ is defined pointwise by

t∅
(
qs1
n

)
:= EPQ

[
max

{
q − qs1

n
, 0
}]

=
∫
q≥q

s1
n

(
q − qs1

n

)
dPQ(q). (2)

If cn = t∅(qs1
n
), agent n is indifferent between searching further or not. Again, his strategy is

described by two non-negative functions, π¬s1
n

n (·) and πnsn (·), such that π¬s1
n

n (I2
n) + πnsn (I2

n) = 1 for
all I2

n ∈ I2
n with Bn = ∅. Here, π¬s1

n
n (I2

n) (πnsn (I2
n)) is the probability that agent n with information

set I2
n samples (does not sample) action ¬s1

n ∈ X.10

Search policy for an agent with nonempty neighborhood. Consider next an agent n who
observes the choices of other agents, that is with Bn 6= ∅. Fix a strategy profile σ−n for agents other
than n. The personal subnetwork of agent n contains conclusive information about the relative
quality of the two actions if and only if some agents in the subnetwork have sampled both actions.
In particular, consider agent n’s conditional belief over the state space Ω given his information set
I1
n. For each action x ∈ X only two mutually exclusive cases are possible:

1. At least one agent in B̂(n, x) has sampled both actions. If agent n knew this to be the case,
his conditional belief on Ω would be PΩ|qx≥q¬x , where ¬x denotes the action in X other than
x. This is so because agents sampling both actions select the alternative with the highest
quality at the choice stage.

2. None of the agents in B̂(n, x) has sampled both actions. If agent n knew this to be the case,
the posterior belief on action ¬x would be the same as the prior PQ.

To understand the optimal search policy of agent n, consider the probability space Y := Ω ×
B× C∞ ×D∞ and the following events in Y :

Ex
n :=

{
y ∈ Y : s2

k = ns for all k ∈ B̂(n, x)
}

for x = 0, 1. (3)

In words, event Ex
n occurs when none of the agents in the personal subnetwork of agent n rela-

tive to action x samples both actions. Let I1
n := {cn, Bn, ak for all k ∈ Bn} be agent n’s realized

information set prior to sampling any action. Given σ−n, agent n can compute the probabilities

Pn(x) := Pσ−n
(
Ex
n | I1

n

)
for x = 0, 1. (4)

These probabilities allow agent n to rank the marginal distributions of the quality of the two
actions in terms of first-order stochastic dominance. If Pn(0) < Pn(1), agent n’s belief about the
quality of action 0 strictly first-order stochastically dominates his belief about the quality of action
1. Therefore, according to Weitzman (1979)’s optimal search rule, agent n samples first action 0:
s1
n = 0. If Pn(1) < Pn(0), by an analogous argument agent n samples first action 1: s1

n = 1. Finally,
10Henceforth, I omit the formal notation to describe agents’ mixed strategies.
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if Pn(0) = Pn(1), the marginal distributions of the quality of the two actions are identical in the
eyes of agent n, who then selects the action to sample first according to his mixed strategy.

To formalize the previous argument, pick any x ∈ X and q with min supp (PQ) < q <

max supp (PQ), and note that:

PQ(qx ≤ q) = PQ(q¬x ≤ q), (5)
PΩ|q¬x≥qx(qx ≤ q) = PΩ|qx≥q¬x(q¬x ≤ q), (6)

and PΩ|q¬x≥qx(qx ≤ q) > PQ(qx ≤ q). (7)

Suppose Pn(x) < Pn(¬x). Conditional on I1
n, agent n’s belief about the quality of action x strictly

first-order stochastically dominates his belief about action ¬x. In fact,

Pσ−n
(
q¬x ≤ q | I1

n

)
= Pσ−n

(
q¬x ≤ q | Ex

n, I
1
n

)
Pσ−n

(
Ex
n | I1

n

)
+ Pσ−n

(
q¬x ≤ q | Ex

n
C , I1

n

)
Pσ−n

(
Ex
n
C | I1

n

)
= PQ(q¬x ≤ q)Pn(x) + PΩ|qx≥q¬x(q¬x ≤ q)(1− Pn(x))
= PQ(qx ≤ q)Pn(x) + PΩ|q¬x≥qx(qx ≤ q)(1− Pn(x))
> PQ(qx ≤ q)Pn(¬x) + PΩ|q¬x≥qx(qx ≤ q)(1− Pn(¬x))

= Pσ−n
(
qx ≤ q | E¬xn , I1

n

)
Pσ−n

(
E¬xn | I1

n

)
+ Pσ−n

(
qx ≤ q | E¬xn

C , I1
n

)
Pσ−n

(
E¬xn

C | I1
n

)
= Pσ−n

(
qx ≤ q | I1

n

)
.

Here, Ex
n
C (E¬xn C) is the complement of Ex

n (E¬xn ), the third equality holds by (5) and (6), and the
inequality follows from (7) and the assumption Pn(x) < Pn(¬x).

Now, let I2
n := {cn, Bn, ak for all k ∈ Bn, qs1

n
} be agent n’s realized information set after having

sampled a first action of quality qs1
n
. Given σ−n, agent n needs to infer the posterior probability

that action ¬s1
n was not sampled by any of the agents in B̂(n, s1

n), as only in this case he can benefit
from the second search. That is, he must compute

Pn
(
qs1
n

)
:= Pσ−n

(
Es1

n
n | I2

n

)
, (8)

where also the information about the quality of the first action sampled is used. With remaining
probability, at least one of those agents sampled action ¬s1

n, but nevertheless chose action s1
n,

in which case s1
n is (weakly) superior by revealed preferences. Agent n’s expected benefit from

sampling action ¬s1
n is therefore Pn(qs1

n
)t∅(qs1

n
), where t∅(·) is defined by (2) and describes the gross

benefit of the second search (the benefit agent n would have if he did not observe any other agent)
when a payoff of qs1

n
has already been secured. It follows that he should only sample further if his

search cost cn is less than tn(qs1
n
), where the function tn : Q→ R+ is defined pointwise as

tn
(
qs1
n

)
:= Pn

(
qs1
n

)
t∅
(
qs1
n

)
. (9)

If cn = tn(qs1
n
), agent n is indifferent between searching further and discontinuing search; conse-

quently, he resolves the uncertainty according to his mixed strategy.

Unless noted otherwise, hereafter I assume that agents sample the second action in case of
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indifference at the second search stage, and that they break ties uniformly at random whenever
indifferent at the first search stage or at the choice stage. The assumption is consistent with the
idea that agents do not prefer an action over the other because of its label, and that labels do not
convey any information about agents’ behavior. Selecting a particular equilibrium simplifies the
exposition, but the results do not depend on this tie-breaking criterion.

Remark 1. For all n ∈ N, agent n’s equilibrium sequential search policy is essentially described
by the probabilities Pn(x) and Pn(qx), defined by (4) and (8) for all x ∈ X and qx ∈ Q. This
characterization relates the dynamics of agents’ optimization to the dynamics of the probability
that they select the best action. Roughly, the intuition is the following:11

Pσ
(
an ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1
n ∈ arg max

x∈X
qx

)
≥ Pσ

({
y ∈ Y : ∃ k ∈ B̂

(
n, s1

n

)
such that s2

k = ¬s1
k

})
= 1− Pσ

({
y ∈ Y : s2

k = ns for all k ∈ B̂
(
n, s1

n

)})
= 1− Pσ

(
Es1

n
n

)
.

Here, the first inequality holds as agent n takes the action of better quality among those he has
sampled. The second inequality follows because if an agent in B̂(n, s1

n) samples both actions and
takes action s1

n, then s1
n is superior by revealed preferences. In turn, the first equality holds as the

two events at issue are one the complement of another, and the second equality holds by definition
of Es1

n
n (see (3)). This link unravels the complications illustrated at the end of Section 3.1 and will

prove a central tool to establish long-run learning results in the analysis to come.

Remark 2. In the collective search environments I study, there is no social belief that forms a
martingale and, at the same time, is of some use when characterizing equilibrium behavior. Thus,
large-sample and martingale convergence arguments, which are standard tools to study aggregation
of dispersed information in social learning settings, have no bite in the present setup. As I will
formalize in Section 5.5, this feature undermines the possibility to learn via the direct observation
of large samples of other agents and the aggregation of the information that their choices convey.

3.3 Social Information and Equilibrium Sequential Search Policies

In equilibrium, social and private information interact: others’ actions inform what agents choose
to learn about and how much information they gather. The equilibrium characterization sheds light
on how social information affects an agent’s optimal sampling sequence and the optimal timing to
stop the search process.

Social Information and Information Choice. Different network structures make different
actions salient and result in different optimal sampling sequences. In some networks, agents always
find it optimal to sample first the action taken by their most recent neighbor, independently of
what action their other neighbors may have taken. This is so, for instance, in the complete network,
under uniform random sampling of at most two agents from the past, and in networks in which

11I refer to Appendix B for the formal details.
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agents observe random numbers of immediate predecessors (see Section 6.1). In contrast, agents
who observe only the choices of other agents with no neighbors always find it optimal to sample
first the action with the highest relative share in their neighborhood (see Example 3 in Section
5.5). In more general network topologies, however, there is no informational monotonicity property
linking an agent’s sampling sequence to the actions of his most recent neighbors or to the relative
fraction of actions he observes. In such cases, though social information guides an agent’s optimal
sampling sequence, neither the most recent nor the most popular actions uniquely determine the
agent’s information choice.

Social Information and Information Acquisition. Each agent faces a three-way trade-off
between exploration (sampling the second action), exploitation (using the information revealed by
others’ choices to save on the cost of the second search), and individual incentives (agents are
myopically interested in exploiting their neighbors’ wisdom). The characterization of the optimal
search policies sheds light on how such trade-off is resolved in equilibrium.

First, (2) and (9) imply tn(q) ≤ t∅(q) for all q ∈ Q, as Pn(q) ∈ [0, 1]. That is, given the quality of
the first action sampled, the expected additional gain from the second search is smaller for an agent
with nonempty neighborhood than for an agent with empty neighborhood. Thus, if an agent with
search cost type c and empty neighborhood discontinues search after sampling an action of quality
q, so does an agent with the same search cost type and nonempty neighborhood after sampling an
action of the same quality. In short, agents with no neighbors have stronger incentives to explore
than agents who exploit the information revealed by their neighbors’ choices.

Second, for agents with empty neighborhood, the expected additional gain from the second
search, and so the incentive to explore, decreases with the quality of the first action sampled:
t∅(q) ≤ t∅(q′) for all q, q′ ∈ Q with q ≥ q′. Thus, if an agent with search cost type c and empty
neighborhood discontinues search after sampling an action of quality q, so does any other agent
with the same search cost type after sampling an action of quality q′ ≥ q.

Finally, the quality of the first action sampled has ambiguous effects on the incentives to explore
of an agent, say n, with nonempty neighborhood. This is so because n’s expected additional gain
from the second search, Pn(qs1

n
)t∅(qs1

n
), depends on the probability Pn(qs1

n
) that none of the agents

in his personal subnetwork relative to action s1
n has sampled action ¬s1

n given that the quality of
s1
n is qs1

n
. This probability need not be monotonic in qs1

n
and depends on the network topology,

the state process, and the search technology. On the one hand, an action of high quality suggests
that some agent has explored both feasible alternatives, discarding the one with low quality to
adopt the superior one. On the other hand, precisely this effect, combined with the fact that t∅(q)
decreases in q, hints that the incentives to acquire information about the second action (exploit
the information revealed by others’ choices) decrease (increase) with the quality of the first action
sampled. This is the central trade-off in the environment I study. Depending on the primitives of
the model, either force may prevail. Thus, the effect of an increase in the quality of s1

n on Pn(qs1
n
)

and, ultimately, on Pn(qs1
n
)t∅(qs1

n
), is ambiguous. In Appendix A, I construct two examples to show

that Pn(qs1
n
)t∅(qs1

n
) can either increase or decrease as qs1

n
increases depending on the primitives of

the model.
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4 Asymptotic Learning
The search technology shapes agents’ possibility to acquire private information and the network
topology shapes agents’ possibility to learn by observing others’ behavior. In this section and in
Section 5, I provide conditions on these primitives under which (different) positive learning results
obtain or fail in the long run.

4.1 Preliminaries

Since the characterization of learning outcomes will hinge on the properties of the search technology,
I first present the relevant terminology and assumptions.

Definition 4. Let {(C,FC ,PC),R} be a search technology:

(a) The search cost c is the lowest cost in the support of PC if, for all ε > 0, FC(c+ ε) > 0 and
FC(c− ε) = 0.

(b) Search costs are bounded away from zero if c > 0; conversely, search costs are not bounded
away from zero if c = 0.

In words, search costs are not bounded away from zero if there is a positive probability of
arbitrarily low search costs.

The next assumption is a joint restriction on the state process and the search technology which
is maintained throughout the paper. It rules out uninteresting learning problems.

Assumption 1 (Non-Trivial Collective Search Environment). There exist q̃, q̃′ in the support
of PQ, possibly with q̃ = q̃′, such that:

1. (a) PQ(q > q̃) > 0;
(b) 1 − FC

(
t∅(q̃)

)
> 0. That is, the distribution of search costs is such that, with positive

probability, an agent n with neighborhood realization Bn = ∅ does not sample another
action when the first action sampled has quality q̃ or higher.

2. (a) PQ(q ≤ q̃′) > 0;
(b) FC

(
t∅(q̃)

)
> 0. That is, the distribution of search costs is such that, with positive

probability, an agent n with neighborhood realization Bn = ∅ samples another action
when the first action sampled has quality q̃′ or lower.

When Part 1. of the assumption fails, in equilibrium, agents with empty neighborhood sample
both actions and take the one with the highest quality, whereas agents with nonempty neighborhood
just follow the behavior of any of their neighbors. Thus, asymptotic learning trivially obtains. When
Part 2. fails, instead, agents never search in equilibrium: each agent samples the first action at no
cost and takes that action. As a result, there is no prospect for social learning since both actions
must be sampled by at least one agent in order to evaluate their relative quality. Assumption 1
excludes such trivial environments.
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4.2 Sufficient Conditions

If search costs are not bounded away from zero, I show that an improvement principle (hereafter,
IP) holds. Then, I leverage the IP to show that asymptotic learning obtains if, in the network
topology, arbitrarily long information paths occur almost surely and are identifiable.12

4.2.1 Improvement Principle

The IP benchmarks the performance of Bayesian agents against a heuristic that is simpler to
analyze and can be improved upon by rational behavior. The heuristic is based on the idea that
an agent always has the option to imitate one of his neighbors and improve upon his outcome. It
works as follows. Upon observing who his neighbors are, each agent selects one neighbor to rely on.
After observing the action of his chosen neighbor, the agent determines his optimal search policy
regardless of what other neighbors have done. The IP holds if: (a) there is a lower bound on the
increase in the probability that an agent samples the best action at the first search over his chosen
neighbor’s probability; this improvement is strict unless the chosen neighbor already samples the
best action with probability one at the first search; (b) the learning mechanism captured by such
heuristic and the associated improvements lead to asymptotic learning. For condition (a) to hold,
it is key that search costs are not bounded away from zero. Condition (ii) requires that, in the
network topology: (i) long information paths occur almost surely, so that improvements last until
agents sample the best action with probability one at the first search; (ii) long information paths
are identifiable, so that agents can single out the correct neighbor to rely on.

To establish these results, I recall some notions on network topologies introduced by Lobel and
Sadler (2015), to which I refer for further discussion. The first notion is a connectivity property
requiring that agents are linked, directly or indirectly, to an unbounded subset of other agents.

Definition 5. A network topology (B,FB,Q) features expanding subnetworks if, for all positive
integers K,

lim
n→∞

Q
(∣∣∣B̂(n)

∣∣∣ < K
)

= 0.

The network topology has non-expanding subnetworks if this property fails.

A network topology has expending subnetworks if the size of B̂(n) grows without bound as n
becomes large or, in other words, if arbitrarily long information paths occur almost surely. This
condition rules out, for instance, the presence of an excessively influential group of individuals, that
is, the existence of infinite subsequences of agents who, with probability uniformly bounded away
from zero, only observe the choices of the same finite set of individuals.

Definition 6. Let (B,FB,Q) be a network topology:

(a) A function γn : 2Nn → Nn∪{0} is a neighbor choice function for agent n if, for all neighborhood
realizations Bn ∈ 2Nn, we have γn(Bn) ∈ Bn when Bn 6= ∅, and γn(Bn) = 0 otherwise. Given
a neighbor choice function γn, we say that γn(Bn) is agent n’s chosen neighbor.

(b) A chosen neighbor topology, denoted by (B,FB,Qγ), is derived from the network topology
(B,FB,Q) and a sequence of neighbor choice functions γ := (γn)n∈N. It consists only of the
links in (B,FB,Q) selected by the sequence of neighbor choice functions (γn)n∈N.

12Formally, an information path for agent n is a sequence (π1, . . . , πk) of agents such that πk = n and πi ∈ B(πi+1)
for all i ∈ {1, . . . k − 1}.
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In words, a given neighbor choice function represents a particular way in which agents select a
neighbor. A chosen neighbor topology then represents a network topology in which agents discard
all observations of the neighbors that are not selected by their neighbor choice function.

The next proposition shows that asymptotic learning via improvements upon imitation occurs if
certain conditions (to be soon clarified) hold. For the rest of this subsection, fix a collective search
environment S := {N, (Q,FQ,PQ), (B,FB,Q), {(C,FC ,PC),R}} and an equilibrium σ ∈ ΣS .

Proposition 2. Suppose there exist a sequence of neighbor choice functions (γn)n∈N and a contin-
uous, increasing function Z : [1/2, 1]→ [1/2, 1] with the following properties:

(a) The corresponding chosen neighbor topology features expanding subnetworks;

(b) Z(β) > β for all β ∈ [1/2, 1), and Z(1) = 1;

(c) For all ε, η > 0, there exists a positive integer Nεη such that for all n > Nεη, with probability
at least 1− η,

Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n))

)
> Z

(
Pσ
(
s1
γn(B(n)) ∈ arg max

x∈X
qx

))
− ε. (10)

Then, asymptotic learning occurs in equilibrium σ.13

Importantly, one needs to show that Bayesian agents who do not ignore all but one of the agents
in their neighborhood can at least obtain the improvements described by conditions (b) and (c) in
Proposition 2. While a Bayesian agent has always a higher probability of sampling first the best
action than an agent following the heuristic described above, the same conclusion does not hold
true for the probability of taking the best action. This is so because agents use their information
to optimize the value of their sequential search program, which is not equivalent to maximizing
the ex ante probability of selecting the best action. For this reason, I consider improvements with
respect to Pσ(s1

n ∈ arg max x∈X qx), and not with respect to Pσ(an ∈ arg max x∈X qx), although the
ultimate interest is in the evolution dynamics of the latter. However, convergence to one of the
probability of sampling first the best action is sufficient for asymptotic learning.

Condition (c) in Proposition 2 requires the existence of a strict lower bound on the increase in
the probability that an agent samples first the best action over his chosen neighbor’s probability
except, possibly, for neighbors that γn selects with vanishingly small probability. Therefore, for the
IP to hold, one must be able to construct a suitable improvement function Z. The next proposition
shows that this is possible if search costs are not bounded away from zero. The intuition goes as
follows. Consider an agent, say n, and his chosen neighbor, say b < n. Unless b samples the best
action with probability one at the first search, b’s expected additional gain from the second search
is positive. Therefore, if search costs are not bounded away from zero, b samples both actions and
compares their quality with positive probability. Thus, as b always takes the best action among
those he samples, with positive probability the action b takes is of better quality than the one he
samples first. Since n finds it optimal to start searching from the action taken by b,14 this results

13The probabilities in (10) and in (11) below are random variables.
14It is intuitive, and formally proven in Appendix B.1, that, when agent n only relies on agent b disregarding what

other agents have done, the marginal distribution of the quality of the action taken by b first-order stochastically
dominates the marginal distribution of the quality of the other action in the eyes of n.
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in a strict improvement in the probability of sampling the best action at the first search that agent
n has over his chosen neighbor b, unless b already does so with probability one.

Proposition 3. Suppose search costs are not bounded away from zero, and let (γn)n∈N be a sequence
of neighbor choice functions. Then, there exists an increasing and continuous function Z : [1/2, 1]→
[1/2, 1], satisfying Z(β) > β for all β ∈ [1/2, 1), Z(1) = 1, and such that

Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
≥ Z

(
Pσ
(
s1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

))

for all agents n and b with 0 ≤ b < n.

The IP not only serves as a proof technique when standard informational monotonicity proper-
ties do not hold (cf. Section 3.3); it is also a learning principle. In particular, the IP captures the
idea that imitation—a boundedly rational procedure—paired with some individual improvement
upon it, is sufficient for positive learning outcomes. Acemoglu et al. (2011) and Lobel and Sadler
(2015) develop an IP for the SSLM as a tool to establish positive learning results in stochastic
network topologies. My results extend the scope of the IP to a new informational environment,
which departs from that of the SSLM in three fundamental ways. First, private information is dif-
ferent in kind: here, sampling an action perfectly reveals its own quality only, whereas in the SSLM
agents receive imperfect signals about the actions’ relative quality. Second, private information
is generated by equilibrium play rather than being exogenously available: agents choose what to
learn about and when to stop acquiring information. Third, the inferential challenge differs: agents
maximize the value of a sequential information acquisition program rather than the probability of
matching a state of nature or an ex ante expected utility. In spite of its limited comparability to
the SSLM, however, I find that improvements upon imitation are a powerful learning principle also
in a collective search environment.

4.2.2 Sufficient Conditions for Asymptotic Learning

To connect Propositions 2 and 3 into a general result, one needs to bound the difference between
Pσ(s1

γn ∈ arg max x∈X qx) and Pσ(s1
γn ∈ arg max x∈X qx | γn). Agent n can imitate agent γn only if

γn ∈ B(n). Therefore, if neighborhoods are correlated, agent γn’s probability of sampling first the
best action conditional on agent n observing agent γn is not the same as agent γn’s probability of
sampling first the best action. That is, by imitation, agent n earns γn’s probability of sampling
first the best action conditional on n choosing to imitate agent γn. If Pσ(s1

γn ∈ arg max x∈X qx)
and Pσ(s1

γn ∈ arg max x∈X qx | γn) are approximately the same for large n, then Propositions 2
and 3 immediately imply asymptotic learning. In other words, long information paths must be
identifiable, in the sense that agents along the path need reasonably accurate information about
the network realization. The next theorem formalizes this last step, which is standard from prior
work (see, in particular, Golub and Sadler (2016)).

Theorem 1. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. Suppose
that the following two conditions hold:

(a) The search technology has search costs that are not bounded away from zero;
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(b) In the network topology there exists a sequence of neighbor choice functions (γn)n∈N such
that the corresponding chosen neighbor topology features expanding subnetworks, and for all
ε, η > 0, there exists a positive integer Nε such that for all n > Nε, with probability at least
1− η,

Pσ
(
s1
γn(B(n)) ∈ arg max

x∈X
qx
∣∣∣ γn(B(n))

)
> Pσ

(
s1
γn(B(n)) ∈ arg max

x∈X
qx

)
− ε. (11)

Then, asymptotic learning occurs in equilibrium σ.

A variety of conditions on the network topology of S ensure that (11) holds in every equilibrium
σ ∈ ΣS . In such cases, if search costs are not bounded away from zero and there exists a chosen
neighbor topology with expanding subnetworks, we say that asymptotic learning occurs in the
collective search environment S. Such conditions have been identified by Acemoglu et al. (2011)
and Lobel and Sadler (2015), to which I refer for further details.

MFP show that search costs that are not bounded away from zero are sufficient for asymptotic
learning in the complete network. By Theorem 1, this insight is much broader: it holds in all
sufficiently connected networks in which information paths are identifiable. Partial and stochastic
observability of past histories, however, considerably changes the analysis. Yet, these complications
allow me to identify improvements upon imitation as a key learning principle in collective search
environments.

4.3 Necessary Conditions on Network Topologies

Connectedness. Asymptotic learning requires that agents observe, directly or indirectly, the
choices of an unbounded subset of other agents. Thus, even if search costs are not bounded away
from zero, asymptotic learning fails with non-expanding subnetworks.

Proposition 4. Let S be a collective search environment where the network topology has non-
expanding subnetworks. Then, there exists no equilibrium σ ∈ ΣS with asymptotic learning.

The idea behind Proposition 4 is simple. Asymptotic learning requires that the probability of
no agent in B̂(n) ∪ {n} sampling both actions converges to zero as n goes to infinity. Otherwise,
there would be a subsequence of agents who, with probability bounded away from zero: (i) only
observe (directly or indirectly) agents who do not compare the quality of the two actions; (ii) do
not make this comparison either. Learning would trivially fail because no agent in the subsequence
conclusively assesses the relative quality of the two actions. Now suppose that the network topol-
ogy has non-expanding subnetworks. By Assumption 1 and the characterization of equilibrium
search policies, each single agent, with or without neighbors, does not search for the second action
with positive probability independently of which action he samples first. Since non-expanding sub-
networks generate with positive probability an infinite subsequence of agents, say N , with finite
personal subnetwork, the probability of no agent in B̂(n) ∪ {n} sampling both actions remains
bounded away from zero for the agents in N . As a result, asymptotic learning fails.

The negative result obtains because infinitely many agents remain uninformed about the relative
quality of the two actions with positive probability. The society might well have infinitely many
perfectly informed agents, but the result of their searches does not spread over the network.
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Identifiability of Information Paths. Similarly to Lobel and Sadler (2015), it is possible to
construct examples in which asymmetric information about the overall network disrupts the IP. In
such cases, asymptotic learning via improvements upon imitation fails even if the network is well
connected and search costs are bounded away from zero.

5 Maximal Learning
In this section, I focus on search costs that are bounded away from zero. First, I define maximal
learning, which is the other learning metric considered in the paper. Second, I explain why the IP
breaks down when search costs are bounded away from zero. Third, I characterize a large class of
network topologies where maximal learning fails when search costs are bounded away from zero.
By means of an example, however, I show that maximal learning obtains in some special network
structures despite search costs that are bounded away from zero. Finally, I argue that large-sample
and martingale convergence arguments are of little use in the search setting I study.

5.1 Maximal Learning: Definition

When search costs are bounded away from zero, information acquisition may be precluded even to
agents with the best search opportunities (the lowest search cost type) and the strongest incentives
to explore (no social information). In such cases, asymptotic learning trivially fails, and so it is not
the correct learning benchmark to consider, as the next example shows.

Example 1. Suppose that the qualities of the two actions are uniform draws from {0, 1/2, 1} and
that the lowest cost in the support of the search cost distribution is c > 1/6. With probability
2/9, the realized quality of the two actions is (q0, q1) ∈ {(1/2, 1), (1, 1/2)}. In such cases, in
equilibrium an agent with no neighbors and search cost type c never samples the second alternative
whatever action he samples first, as his expected additional gain from the second search is at most
1/3(1 − 1/2) = 1/6, which is smaller than his search cost. However, this agent only samples the
best action at the first search with probability 1/2. In turn, agents with a higher search cost type
and/or nonempty neighborhood do not sample the second action either, independently of which
action they sample first (see Section 3.2). Therefore, when (q0, q1) ∈ {(1/2, 1), (1, 1/2)}, each agent
in the social network makes the wrong choice with positive probability. �

Fix a collective search environment S and let c ≥ 0 be the lowest cost in the support of the
search cost distribution of S. Define the threshold quality q(c) := inf{q ∈ Q : t∅(q) < c}, and let

Ω(c) := {ω := (q0, q1) ∈ Ω : qi ≥ q(c) for i = 0, 1} .

Consider an expert—an agent with search cost type c and no social information—who wishes to
select the best action in X. The expert samples both actions whenever the action he samples first
has quality lower than q(c). Thus, since ω 6∈ Ω(c) if and only if min{q0, q1} < q(c), the expert always
takes the best action when ω 6∈ Ω(c). In contrast, the expert never searches twice when ω ∈ Ω(c);
in such case, the expert takes the best action only if he samples it at the first search. With the
next definition, I introduce the notion of maximal learning, which obtains if agents asymptotically
select the best action with the same ex ante probability as an expert.
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Definition 7. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. Maximal
learning occurs in equilibrium σ if

lim
n→∞

Pσ
(
an ∈ arg max

x∈X
qx
∣∣∣ ω 6∈ Ω(c)

)
= 1. (12)

When search costs are not bounded away from zero, maximal learning reduces to asymptotic
learning. In contrast, when search costs are bounded away from zero, maximal and asymptotic
learning may or may not coincide. Example 1 suggests that the two notions are distinct. However,
this is not always true. Suppose the qualities of the two actions are uniform draws from {0, 1},
and c < 1/2. In this case, maximal and asymptotic learning coincide, as an expert with search
cost type c samples the second action whenever the first action sampled has quality 0. In general,
maximal learning is a weaker requirement than asymptotic learning; it represents the best outcome
a society can aim for when search costs are bounded away from zero.

The next assumption, which parallels Assumption 1, is maintained throughout Section 5.

Assumption 2 (Non-Trivial Collective Search Environment Conditional on ω 6∈ Ω(c)).
There exists q̃ in the support of PQ such that:

(a) PQ(q̃ < q < q(c)) > 0;

(b) 1− FC
(
t∅(q̃)

)
> 0. That is, the distribution of search costs is such that, with positive proba-

bility, an agent n with neighborhood realization Bn = ∅ does not sample another action when
the first action sampled has quality q̃ or higher.

Assumption 2 rules out uninteresting learning problems where agents with no neighbors always
sample both actions when ω 6∈ Ω(c). If this assumption fails, asymptotic learning trivially obtains
for ω 6∈ Ω(c), and never obtains otherwise.

Remark 3. Let S be a collective search environment where the network topology has non-
expanding subnetworks. By the same argument establishing Proposition 4, there exists no equilib-
rium σ ∈ ΣS with maximal learning.

5.2 Failure of the Improvement Principle

Search costs that are bounded away from zero disrupt the IP, as improvements upon imitation are
precluded to late moving agents. Therefore, asymptotic and maximal learning via the IP fail.

To formalize the argument, consider a collective search environment S where c > 0. Suppose
that ω 6∈ Ω(c) and, by way of contradiction, that the IP holds. Then, there must be some chosen
neighbor topology in which the probability that none of the agents in B̂(n) ∪ {n} samples both
actions converges to zero as n grows large. Therefore, there must be an infinite subsequence of
agents N where, for a sufficiently late moving agent m ∈ N , this probability is so small that the
expected additional gain from the second search falls below c > 0, and remains below this threshold
afterward. As a result, no agent in N moving after agent m will sample the second action. At the
same time, by Assumption 2, the probability that none of the agents in B̂(m)∪ {m} samples both
actions is positive for any finite m. This is a contradiction, as then the probability that none of
the agents in B̂(n) ∪ {n} samples both actions remains bounded away from zero for the infinite
subsequence of agents N .
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In the SSLM, the most informative private signals, whether bounded or not, are transmitted
via the IP throughout well-connected networks with identifiable information paths. Therefore, in
such networks, societies that rely on improvements upon imitation perform as well as a single agent
with no social information who has access to the strongest private signals. In contrast, in collective
search environments, a perturbation of the search technology disrupts the IP: if search costs are
bounded away from zero, societies that rely only on improvements upon imitation perform strictly
worse than a single agent with no social information who has access to the lowest search costs—at
least from the viewpoint of the probability of taking the best action.

The IP is not the only learning principle. In Section 5.4, I inquire whether there exist network
topologies where maximal learning always fails—no matter what agents may do in order to learn—
when search costs are bounded away from zero. In Section 5.5, in contrast, I inquire whether there
exist some network topology and some learning principle under which maximal learning obtains
despite search costs that are bounded away from zero.

5.3 OIP Networks

I now define a class of network topologies which will be extensively discussed in the rest of Section
5 and in Section 6. For all n ∈ N and ln ∈ Nn, let

Bln
n := {k ∈ Nn : k ≥ n− ln}

be the subset of Nn comprising the ln most immediate predecessors of n. For instance: if ln = 1,
then B1

n = {n− 1}; if ln = n− 1, then Bn−1
n = {1, . . . , n− 1}.

Definition 8. A network topology (B,FB,Q) features observation of immediate predecessors if, for
all n ∈ N,

Q
( ⋃

ln∈Nn

(
B(n) = Bln

n

))
= 1.

I will often refer to network topologies featuring observation of immediate predecessors as OIP
networks. OIP networks represent a large class of network structures, ranging from deterministic
network topologies to stochastic networks with rich correlation patterns between neighborhoods.

Example 2. Here are some examples of OIP networks.

1. If Q(B(n) = Bn−1
n ) = 1 for all n, we have the complete network.

2. If Q(B(n) = B1
n) = 1 for all n, we have the network topology where each agent only observes

his most immediate predecessor.

3. As an example of stochastic network with independent neighborhoods, consider the following:
for all n ∈ N, Qn(B(n) = B1

n) = (n− 1)/n and Qn(B(n) = Bn−1
n ) = 1/n. In this case, agents

either observe their most immediate predecessor, or all of them, with the latter event becoming
less and less likely as n grows large.

4. Stochastic networks with correlated neighborhoods are also possible. For instance: Q(B(2) =
{1}) = 1, Q(B(3) = {2}) = 1/2 = Q(B(3) = {1, 2}), and, for all n > 3,

B(n) =

{n− 1} if B3 = {2}
{1, . . . , n− 1} if B3 = {1, 2}

.
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Here, every agent observes only his immediate predecessor or all his predecessors, depending
on agent 2’s neighborhood realization. �

5.4 Failure of Maximal Learning

When search costs are bounded away from zero, maximal learning fails in all OIP networks and in
networks where each agent has at most one neighbor (for example, under random sampling of one
agent from the past).

Theorem 2. Let S be a collective search environment where the search technology has search costs
that are bounded away from zero and the network topology satisfies one of the following conditions:

(a) Observation of immediate predecessors;

(b) Q(|B(n)| ≤ 1) = 1 for all n ∈ N.

Then, there exists no equilibrium σ ∈ ΣS with maximal learning.

The intuition behind the result is simple. In networks satisfying the conditions of Theorem 2,
rational behavior coincide with imitation as captured by the IP. Therefore, as the IP fails when
search costs are bounded away from zero (see Section 5.2), so does rational learning.

The negative result on maximal learning extends beyond the observation structures in Theorem
2. For instance, maximal learning fails in OIP networks if, in addition, agents observe the choices
of the first K agents or the aggregate history of prior actions (see Sections 6.1 and 6.4); it also fails
when each agent n samples M > 1 agents uniformly and independently from {1, . . . , n− 1}.

Theorem 2 characterizes a class of networks where, when search costs are bounded away from
zero, asymptotic learning fails discontinuously with respect to the benchmark learning metric.
In fact, even the second best outcome (maximal learning) breaks down. In contrast, when private
beliefs are bounded, in the SSLM information diffuses in network topologies satisfying the conditions
in Theorem 2. Therefore, in these networks, while asymptotic learning fails with bounded private
beliefs, the second best learning outcome (diffusion) obtains. This is no longer true in collective
search environments.

Theorem 2 characterizes a class of network topologies where search costs that are not bounded
away from zero are necessary and sufficient for asymptotic learning. The theorem thus generalizes
the characterization result of MFP from the complete network to a larger class of network structures.
The novel insight that maximal learning fails as well highlights the fragility of positive learning
results with respect to perturbations in the search technology.

5.5 Maximal Learning and the Large-Sample Principle

In this section, I investigate whether there exists some network topology where maximal learning
obtains when zero is not in the support of the search cost distribution. For the SSLM, Acemoglu
et al. (2011) (see their Theorem 4) characterize a class of network topologies where asymptotic
learning obtains with bounded private beliefs. Their findings suggest that maximal learning might
occur in some networks despite search costs that are bounded away from zero. The next example
shows that this intuition is correct in some very special cases.
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Example 3. Let S be a collective search environment where the lowest cost in the support of the
search cost distribution is c > 0. Assume that the network topology satisfies, for all n ∈ N,

Q(B(n) = ∅) = pn and Q(B(n) = {m ∈ Nn : B(m) = ∅}) = 1− pn,

where the sequence (pn)n∈N is such that 0 ≤ pn ≤ 1 for all n, limn→∞ pn = 0, and ∑∞
n=1 pn =

∞. That is, agent n has empty neighborhood with probability pn, or observes all and only his
predecessors with empty neighborhood with probability 1− pn.

Suppose (q0, q1) 6∈ Ω(c) and, without loss, q0 > q1. Consider first an agent, say k, with B(k) = ∅.
By definition of Ω(c) and c, k samples the second action with positive probability when he samples
action 1 first. Hence, k takes the best action (ak = 0) with probability α > 1/2.15

Now consider an agent, say l, with B(l) 6= ∅. By the assumptions on the network topology,
agent l only observes the choices of all his predecessors with empty neighborhood. Thus, l’s
optimal decision at the first search stage depends on the relative fraction of choices he observes. In
particular:

s1
l =

0 if
∣∣∣B̂(l, 0)

∣∣∣ > ∣∣∣B̂(l, 1)
∣∣∣

1 if
∣∣∣B̂(l, 0)

∣∣∣ < ∣∣∣B̂(l, 1)
∣∣∣ ,

and s1
l ∈ ∆({0, 1}) if |B̂(l, 0)| = |B̂(l, 1)|. To see this, note that |B̂(l, x)| > |B̂(l,¬x)| immediately

implies Pl(x) < Pl(¬x), where Pl(·) is the probability defined by (4).
The assumptions on (pn)n∈N imply that limn→∞Q(|B̂(n)| < K) = 0 for all positive integers

K. Hence, with probability one, there are infinitely many agents with no social information.
Moreover, the actions taken by the agents with empty neighborhood form a sequence of independent
random variables. Thus, by the weak law of large numbers, the ratio |B̂(l, 0)|/|B̂(l, 0)| converges
in probability to α > 1/2 as l→∞ (with respect to Pσ, and conditional on B̂(l) 6= ∅). Therefore,

lim
l→∞

Pσ
(∣∣∣B̂(l, 0)

∣∣∣ > ∣∣∣B̂(l, 1)
∣∣∣ ∣∣∣ B̂(l) 6= ∅

)
= 1. (13)

Finally, for all n ∈ N, note that

1 ≥ Pσ
(
an ∈ arg max

x∈X
qx
∣∣∣ ω 6∈ Ω(c)

)

≥ Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ ω 6∈ Ω(c)

)

= Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ B(n) = ∅, ω 6∈ Ω(c)

)
Q(B(n) = ∅) (14)

+ Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ B(n) 6= ∅, ω 6∈ Ω(c)

)
Q(B(n) 6= ∅)

≥ 1
2pn + Pσ

(∣∣∣B̂(n, 0)
∣∣∣ > ∣∣∣B̂(n, 1)

∣∣∣ ∣∣∣ B̂(l) 6= ∅
)
(1− pn).

Here, the second inequality holds as agent n takes the action of better quality among those he has
15Agent k takes the best action any time he samples first action 0, which occurs with probability 1/2, and any

time he samples first action 1 and his search cost is smaller that t∅(q1). Since q0 > q1 and (q0, q1) 6∈ Ω(c), q1 < q(c),
and so the latter event occurs with positive probability. Therefore, the overall probability that agent k takes action
0 is larger than 1/2. Providing an expression for α is irrelevant for the following argument.
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sampled; the first equality holds by the law of total probability; the third inequality follows by
the properties of the network topology, the fact that q0 > q1, the assumption that agents with no
neighbors select uniformly at random the action to sample first, and the optimal policy at the first
search stage for agents with nonempty neighborhood.

By (13), and since limn→∞ pn = 0, we have

lim
n→∞

[1
2pn + Pσ

(∣∣∣B̂(l, 0)
∣∣∣ > ∣∣∣B̂(l, 1)

∣∣∣)(1− pn)
]

= 1. (15)

Together, (14) and (15) imply

lim
n→∞

Pσ
(
an ∈ arg max

x∈X
qx
∣∣∣ ω 6∈ Ω(c)

)
= 1,

showing that maximal learning occurs. �

The positive result in Example 3 relies on the assumption that agents with nonempty neigh-
borhood only observe agents with no social information. Under this premise, the optimal policy at
the first search stage for the former group of agents is determined by the relative fraction of choices
they observe. When agents with nonempty neighborhood observe more, however, connecting the
optimal search policy to the ratio of observed choices is no longer possible. Therefore, it is unclear
whether (and to what extent) the insight of Example 3 extends to a more general characterization.

The positive results in Acemoglu et al. (2011) make an extensive use of large-sample and mar-
tingale convergence arguments, which have no bite in collective search environments (see Remark
2 in Section 3.2.2). These arguments are commonly referred to as the large-sample principle (here-
after, LSP) and capture the idea that agents learn by aggregating the information contained in
a large sample of others’ choices. The scope of the LSP is severely hampered in the present en-
vironment, emphasizing once more the distinction between the inferential challenge in the search
setting I study and that in the SSLM. Therefore, if any characterization of networks where maximal
learning occurs despite c > 0 is within reach, it requires a different line of attack.

Maximal and asymptotic learning sometimes coincide despite search costs are bounded away
from zero (see Section 5.1). Thus, Example 3 also shows that asymptotic learning may occur when
zero is not in the support of the search cost distribution. In other words, search costs that are not
bounded away from zero are not, in general, necessary for asymptotic learning.

6 Rate of Convergence, Welfare, and Efficiency
In this section, I present results on the speed and efficiency of social learning, the probability of
wrong herds, and equilibrium welfare. I also discuss simple policies that increase welfare. Part of
the analysis will focus on OIP networks, so I begin with a sketch of equilibrium behavior in such
networks.

6.1 Equilibrium Strategies in OIP Networks

Before describing equilibrium strategies in OIP networks, I introduce some terminology.
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Definition 9. Let S be a collective search environment where the network topology features obser-
vation of immediate predecessors, and let σ ∈ ΣS . We say:

(a) Action x ∈ X is revealed to be inferior to agent n in equilibrium σ if there exist agents
j, j + 1 ∈ B(n) such that aj = x and aj+1 = ¬x.

(b) Action x ∈ X is revealed to be inferior by time n in equilibrium σ if there exist agents
j, j + 1 ∈ N, with j + 1 < n, such that aj = x and aj+1 = ¬x.

(c) Action x ∈ X is inferior by time n in equilibrium σ if there exists an agent j ∈ N, with j < n,
who has sampled both actions and such that aj = ¬x.

If an action is revealed to be inferior to agent n, then it is also revealed to be inferior by time
n. The converse statement is not generally true, but it is so in the complete network.

Equilibrium Strategies in OIP Networks. Agent n ≥ 2’s equilibrium strategy is the following
(see Appendix B.3 for the formal characterization). At the first search stage, agent n samples the
action taken by his immediate predecessor: s1

n = an−1. Hence, if an action is revealed to be inferior
by time n, it is also inferior by time n. The converse statement is not generally true.

At the second search stage, the optimal policy depends on whether action ¬s1
n is revealed to be

inferior to agent n or not. If action ¬s1
n is revealed to be inferior to agent n, then n discontinues

search and takes action s1
n. The reason for not sampling ¬s1

n is straightforward. Suppose there are
agents j, j + 1 ∈ B(n) such that aj = ¬s1

n and aj+1 = s1
n. Since agents start sampling from the

action taken by their immediate predecessor, agent j + 1 must have sampled action ¬s1
n first, and

therefore would only select aj+1 = s1
n at the choice stage if he then sampled action s1

n as well, and
qs1
n
≥ q¬s1

n
. That is, action ¬s1

n is revealed to be inferior to action s1
n by agent j+ 1’s choice, and so

the expected additional gain from the second search is zero. If instead action ¬s1
n is not revealed to

be inferior to agent n, the expected additional gain from the second search given quality qs1
n

is the
same as in the complete network for an action of the same quality that is not revealed to be inferior
by time n. The intuition goes as follows. In all OIP networks agent n’s personal subnetwork is
{1, . . . , n − 1}, which coincides with agent n’s neighborhood in the complete network. Moreover,
all agents start sampling from the action taken by their most immediate predecessor. Thus, given
qs1
n
, the probability that none of the agents in n’s personal subnetwork relative to s1

n has sampled
both actions must be the same. But then, if s1

n is not revealed to be inferior to agent n, agent n
adopts the same threshold he would use in the complete network to determine whether to search
further after sampling an action of the same quality that is not revealed to be inferior by time n.

Remark 4. Fix a state process and a search technology. By the previous argument, the following
equilibrium objects are identical across OIP networks: the order of search; the cutoff for sampling
a second action that is not revealed to be inferior to an agent; the probability that each agent n
selects the best action. Then:

(a) In OIP networks, transparency of past histories, the density of connections and their cor-
relation pattern do not affect equilibrium inference and several equilibrium outcomes. In
particular, in all OIP networks: the probability of wrong herds is the same as in the complete
network; if search costs are not bounded away from zero, so that asymptotic learning occurs,
the rate of convergence is the same as in the complete network.
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(b) In OIP networks, actions are improving; that is, each agent takes a weakly better action than
his predecessors.16

These properties distinguish the search environment I study from the SSLM, where equilibrium
dynamics dramatically change as the number of immediate predecessors that are observed varies.
For instance, Celen and Kariv (2004) study the SSLM under the assumption that each agent only
observes his most recent predecessor’s action and show that beliefs and actions cycle indefinitely.

6.2 Rate of Convergence and Probability of Wrong Herds

Rate of converge. I begin by introducing a property of search cost distributions that will affect
the results on the rate of convergence.

Definition 10. Let (Q,FQ,PQ) be a state process and {(C,FC ,PC),R} a search technology. Set
q := min supp

(
PQ
)
. The search cost distribution has polynomial shape if there exist some real

constants K and L, with K ≥ 0 and 0 < L < 2K+1

(K+2)t∅(q)K , such that

FC(c) ≥ LcK for all c ∈
(
0, t∅

(
q
)
/2
)
.

Convergence to the best action is faster than a polynomial rate in OIP networks and faster
than a logarithmic rate under uniform random sampling of one agent from the past. Thus, the
speed of learning is slower under uniform random sampling of one agent from the past than in
OIP networks. Intuitively, this is so because the cardinality of agents’ personal subnetworks grows
at a slower rate than in OIP networks, and so does the probability that at least one agent in the
personal subnetworks has sampled both actions.

Proposition 5. Suppose that search costs are not bounded away from zero and that the search cost
distribution has polynomial shape.

(a) If the network topology features observation of immediate predecessors, then, in any equilib-
rium σ ∈ ΣS ,

Pσ
(
s1
n 6∈ arg max

x∈X
qx

)
= O

(
1

n
1

K+1

)
.

(b) If the network topology has independent neighborhoods and Qn(B(n) = {b}) = 1/(n − 1) for
all b ∈ Nn, then, in any equilibrium σ ∈ ΣS ,

Pσ
(
s1
n 6∈ arg max

x∈X
qx

)
= O

 1
(log n)

1
K+1

.
To prove the previous results, I build on a technique developed by Lobel, Acemoglu, Dahleh

and Ozdaglar (2009) to characterize the speed of learning in the SSLM. This technique consists in
approximating a lower bound on the rate of convergence with an ordinary differential equation.

16This property is lost in general network topologies, where agents may generate long patterns of disagreement
before settling on one action. Disagreement, however, does not necessarily have negative welfare implications, as it
may foster exploration and speed up convergence to the right action.
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Probability of Wrong Herds. In OIP networks and under uniform random sampling of one
agent from the past, we can bound the probability of suboptimal herds as a linear function of the
lowest cost in the support of the search cost distribution.

Proposition 6. Let S be a collective search environment where the network topology either features
observation of immediate predecessors or has independent neighborhoods with Qn(B(n) = {b}) =
1/(n − 1) for all b ∈ Nn. Moreover, let c be the lowest cost in the support of PC. Then, in any
equilibrium σ ∈ ΣS , the quantity

Pσ
(
a1
n 6∈ arg max

x∈X
qx

)
≤ cEPQ

[
1

t∅(q0)

∣∣∣∣ q0 < q1

]
.

By Proposition 6, the probability that agents asymptotically select the best action converges to
one as c approaches zero. Despite this “continuity” result, however, the probability of wrong herds
may remain sizable if search costs are bounded away from zero. This is so even when maximal and
asymptotic learning coincide, as the next example shows.

Example 4. Suppose the network topology features observation of immediate predecessors. As-
sume that the qualities of the two actions are drawn uniformly at random from {0, 1}, and that
search costs are drawn from {1/2, 2/3}, with PC(c = 1/2) = δ and PC(c = 2/3) = 1 − δ for
some δ ∈ (0, 1). To simplify the exposition, assume that agents sample the other action in case of
indifference at the second search stage. For an agent with no neighbors, the expected additional
gain from a second search after sampling an action of quality 0 is 1/2 = c. Thus, maximal and
asymptotic learning coincide, as an expert would always select the best action.

With probability 1/2, (q0, q1) ∈ {(0, 1), (1, 0)}. In such cases, agent 1 selects the best action
with probability (1 + δ)/2. Therefore, the ex ante probability that agent 1 selects a wrong action is
(1− δ)/4. Moreover, the expected additional gain from a second search for agent 2 (and for all his
successors) after sampling an action of quality 0 is smaller than 1/2 = c, as agent 1 samples both
actions with positive probability. Therefore, no agent moving after agent 1 samples both action.
Thus, a suboptimal herd forms whenever agent 1 selects the wrong action. As δ approaches zero,
the latter event occurs with probability arbitrarily close to 1/4. �

6.3 Equilibrium Welfare and Efficiency in OIP Networks

In this section, I first characterize how transparency of past histories affects equilibrium welfare.
Then, I compare equilibrium welfare against the efficiency benchmark where agents are replaced
by a single decision maker. To aid analysis, I assume that PC admits density fC with fC(c) > 0.

Equilibrium Welfare across OIP Networks. Equilibrium welfare is not the same across OIP
networks. To see this, suppose there exist agents j, j+1 such that aj = x and aj+1 = ¬x. Therefore,
action x is revealed to be inferior by time j + 2 in equilibrium. In the complete network, action x

is revealed to be inferior to any agent n ≥ j + 2, and so it is never sampled again. In other OIP
networks, instead, agent j is not necessarily in the neighborhood of agent n ≥ j + 2, and therefore
n fails to realize from agent j + 1’s choice that action x is of lower quality than action ¬x. Thus,
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agent n inefficiently samples action x with positive probability at the second search stage.17

This kind of inefficient duplication of costly search is more severe the shorter in the past agents
can observe. Therefore, the complete network is the most efficient OIP network, and the network
where agents only observe their most recent predecessor is the least efficient in this class. In all
other OIP networks, equilibrium welfare is comprised between these two bounds.

The next proposition shows that welfare losses arising because agents fail to recognize actions
that are revealed to be inferior by the time of their move only vanish in the limit of an arbitrarily
patient society (equivalently, in the long run). These losses, however, remain significant in the
short and medium run. To ease the statement of the result, let S and S ′ be two collective search
environments with identical state process and search technology. Suppose that the network topology
of S is the complete network and that in S ′ agents only observe their most immediate predecessor.
Let σ ∈ ΣS and σ′ ∈ ΣS′ and suppose that agents break ties according to the same criterion in σ

and σ′. Assume that future payoffs are discounted at rate δ ∈ (0, 1).

Proposition 7. For all δ ∈ (0, 1), the average social utility in equilibrium σ is larger than the
average social utility in equilibrium σ′. This difference vanishes as δ goes to one.

Single Decision Maker Benchmark. Suppose agents are replaced by a single decision maker
who draws a new search cost in each period and faces the same connections’ structure as the agents
in the society. The single decision maker discounts future payoffs at rate δ ∈ (0, 1), internalizes
future gains of today’s search, and needs to sample each of the two actions exactly once along the
same information path. Since in OIP networks each agent is (directly or indirectly) linked to all
his predecessors, all agents lie on the same information path. Therefore, the single decision maker
achieves the same average social utility in all OIP networks.18

Equilibrium behavior in OIP networks gives rise to two sources of inefficiency:

(i) The single decision maker internalizes future gains of today’s search, whereas agents are
myopic. As a result, exploration and convergence to the right action is too slow in equilibrium.

(ii) The single decision maker samples each action exactly once. By contrast, in equilibrium:

(a) Each agent n fails to recognize an action, say x, that is inferior, and not revealed to be
so, by time n. Therefore, agents sample action x multiple times.

(b) Each agent n fails to recognize an action, say x, that is revealed to be inferior by time
n, i.e. such that aj = x and aj+1 = ¬x for some agents j, j + 1, with j + 1 < n, unless
j ∈ B(n). Again, agents sample action x multiple times.

As a result, equilibrium behavior displays inefficient duplication of costly search. Note that,
while (a) occurs in all OIP networks, (b) does not in the complete network.

Equilibrium welfare losses disappear in the long run if and only if asymptotic learning occurs.
If search costs are bounded away from zero, or if the focus is on short- and medium-run outcomes,
the average social utility in equilibrium is lower than under the single decision maker benchmark.

17For the descriptive analysis in this section, assume that search costs are not bounded away from zero. The
formal details are in Appendix B.6.

18I refer to Section III.A. in MFP for the solution to the single decision maker’s problem in the complete network.
As the single decision maker’s problem is the same in all OIP networks, their analysis applies unchanged to my
setting.
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Proposition 8. Let S ′′ be collective search environment where the network topology features ob-
servation of immediate predecessors. Then, the average social utility in any equilibrium σ′′ ∈ ΣS′′
converges to the average social utility implemented by the single decision maker as δ goes to one if
and only if search costs are not bounded away from zero.

Discussion of Rate of Convergence, Probability of Wrong Herds, and Welfare. The
results in Sections 6.2 and 6.3 are noteworthy for two reasons. First, in OIP networks the speed
of learning, the probability of wrong herds, and the long-run welfare neither depend on the trans-
parency of past histories nor on the correlation structure among connections. Second, the rate of
convergence can be characterized for all such networks. By contrast, for the SSLM little is known
about convergence rates unless all agents observe the most recent action, a random action from the
past, or all past actions (see Lobel et al. (2009), Rosenberg and Vieille (2018), and Hann-Caruthers,
Martynov and Tamuz (2018)).19

Rosenberg and Vieille (2018) consider two measures of the efficiency of social learning in the
SSLM: the expected time until the first correct action and the expected number of incorrect actions
(see also Hann-Caruthers et al. (2018)). They focus on two polar setups and assume that each agent
either observes the entire sequence of earlier actions or only the previous one. In a similar spirit
with my results, they find that whether learning is efficient is independent of the setup: for every
signal distribution, learning is efficient in one setup if and only if it is efficient in the other one. In
my setting, the results on the irrelevance of how far in the past agents can observe is much stronger:
first, it holds for the long-run welfare as well as for the probability of wrong herds and the speed of
learning; second, it neither depends on the number of immediate predecessors that agents observe
nor on the dependence structure among connections.

6.4 Policy Interventions

Reducing transparency of past histories in OIP networks leads to inefficient duplication of costly
search. Simple policy interventions, however, can improve efficiency and equilibrium welfare.

Consider two collective search environments S and S ′ with identical state process and search
technology. Assume S is endowed with the complete network, and let σ ∈ ΣS . Suppose that S ′

is endowed with any OIP network and that each agent in S ′, in addition to the actions of his
neighbors, observes the aggregate history of past actions or the action of the first agent (or both).
Let σ′ be an equilibrium of the game associated to S ′ and suppose that agents break ties according
to the same criterion in σ and in σ′. Then, we have the following.

Proposition 9. For all δ ∈ (0, 1), the average social utility in equilibrium σ′ is the same as the
average social utility in equilibrium σ.

Equilibrium welfare in OIP networks is the same as in the complete network (the most efficient
OIP network) if agents observe, in addition to their neighbors’ actions, the aggregate history of past
actions or the action of the first agent. The intuition behind the result is simple. First, observing
the action of the first agent or the aggregate history of past actions (or both) does not change
equilibrium behavior at the first search stage: in σ′, each agent starts sampling from the action
taken by his immediate predecessor. Second, if an action is revealed to be inferior by time n in

19For the speed of rational learning, see also Vives (1993) and Harel, Mossel, Strack and Tamuz (2018).
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equilibrium σ′, that action is never sampled again by any agent m ≥ n. To see this, suppose that
there exist agents j, j + 1 ∈ N such that aj = x and aj+1 = ¬x, and consider any agent n > j + 1.
Agent n samples first action an−1. Since each agent starts sampling from the action taken by his
immediate predecessor and takes the action of better quality, it must be that an−1 = ¬x. Now, if
agent n observes the choice of the first agent or the aggregate history of past actions, he realizes
that q¬x ≥ qx even when j 6∈ B(n). In fact, when n observes a1 = x and an−1 = ¬x, he correctly
infers that some agent j + 1, with 1 ≤ j ≤ n − 2, has sampled both actions and discarded the
inferior action x. Therefore, n stops searching and takes action ¬x. The same inference is possible
when agent n observes the aggregate history of past choices. In this case, n would observe that j
agents have taken action x, while n− j−1 agents have taken action ¬x. Together with an−1 = ¬x,
this implies that a1 = x and that some agent j + 1, with 1 ≤ j ≤ n− 2, has sampled both actions
and discarded the inferior action x. Therefore, the duplication of costly search that would arise
because agents fail to recognize actions that are revealed to be inferior by time n disappears.

Interestingly, the policy interventions that this section suggests are easy to implement and
commonly observed in practice. For instance, online platforms that aggregate past individual
choices by sorting different items according to their popularity or sales rank serve the purpose.

Letting agents observe the aggregate history of past actions or the action of the first agent
are effective policies beyond OIP networks. For instance, by an argument similar to the previous
one, letting agents observe the action of the first agent reduces inefficient duplication of costly
search under random sampling of one agent from the past. Such interventions, however, do not
remove the inefficient duplication of costly search arising when agents fail to recognize actions that
are inferior, and not revealed to be so, by some time n. In addition, such interventions do not
incetivize exploration; thus, agents delay the second search more than the single decision maker
and the rate of convergence remains too slow. A natural step for future research is to understand
how and to what extent more complex incentive schemes, which make use of monetary transfers or
information management tools, can reduce these other inefficiencies as well.20

7 Concluding Remarks
I study observational learning over general networks where rational agents acquire private informa-
tion via costly sequential search. When search costs are not bounded away from zero, asymptotic
learning occurs in sufficiently connected networks where information paths are identifiable. The
result relies on two theoretical underpinnings: first, I relate agents’ solution to their information
acquisition problem to the equilibrium probability that they select the best action; second, I es-
tablish an IP for a novel informational environment, which significantly departs from that studied
by previous models of social learning. The IP, however, is particularly fragile in collective search
environments: it breaks down as soon as zero is removed from the support of the search cost distri-
bution. When search costs are bounded away from zero, even the weaker requirement of maximal
learning fails in a large class of networks. Thus, when search costs are bounded away from zero,
asymptotic learning fails discontinuously with respect to the benchmark learning metric. In some

20A recent and growing literature in economics and computer science, including Smith, Sørensen and Tian (2017),
Kremer, Mansour and Perry (2014), Che and Hörner (2018), Papanastasiou, Bimpikis and Savva (2018), Mansour,
Slivkins and Syrgkanis (2015), and Mansour, Slivkins, Syrgkanis and Wu (2016), studies optimal design in the SSLM
and other related sequential social learning environments.
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stochastic networks maximal (and sometimes also asymptotic) learning occurs despite search costs
that are bounded away from zero. The impossibility to develop martingale convergence arguments,
however, severely prevents the society from learning via the aggregation of dispersed pieces of in-
formation. In contrast with previous models of sequential learning, many equilibrium properties of
the complete network extend to all networks where agents observe random numbers of immediate
predecessors. Reducing transparency of past histories leads to welfare and efficiency losses. Simple
policy interventions, such as letting agent observe the relative fraction of previous choices, restore
part of the lost welfare.

Several questions remain. First, a general characterization of networks where maximal learning
obtains when search costs are bounded away from zero is missing. Finding the demarcation line
between possibility and impossibility of maximal learning in terms of network properties would be a
valuable addition to this research. Second, quantifying the rate of convergence and efficiency losses
in general networks is an important, but complex, task. Third, it remains to study the design of
more complex incentives schemes to reduce inefficiencies and foster social exploration.

More broadly, relaxing the assumptions that agents have homogeneous preferences or that
they can only take an action they have sampled might generate new insights. Lobel and Sadler
(2016) study preference heterogeneity and homophily in the SSLM. They find that the IP suffers,
as imitation no longer guarantees the same payoff that a neighbor obtains when preferences are
diverse; in contrast, the LSP has more room to operate. In the search setting I study, the IP is the
key learning principle, while large-sample arguments have much less bite. Therefore, it is unclear
what the analysis of preference heterogeneity would look like in collective search environments.
Relaxing the assumption that agents can only take an action they have sampled is also non-trivial;
this is a difficult question even for the single-agent sequential search problem (see Doval (2018) for
recent progress).

Alternatively, one might assume that acquiring private information and observing past histories
are both costly activities. If agents are heterogeneous across these two dimensions, in equilibrium
some agents will specialize in search, while others in networking, thus enabling information to
diffuse. Studying how agents make this trade-off, which network structures endogenously emerge,
and the implications for social learning is a promising direction for future research.
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A Examples for Section 3.3
The first (resp., second) example shows that the incentive to explore for agents with nonempty
neighborhood may increase as the quality of the first action sampled increases (resp., decreases).

Example 5. Suppose the qualities of the two actions are drawn uniformly at random from{
0, 49

100 ,
51
100 , 1

}
. Moreover, let

{
0, 9

100 ,
1
8 ,

1
3

}
be the support of the search cost distribution, with

PC(c = 0) = 1
200 , PC(c = 9/100) = 1

200 , PC(c = 1/8) = 32
100 , and PC(c = 1/3) = 67

100 .

Assume without loss that a1 = 0 and that agent 2 observes agent 1’s action. By Lemma 13
in Appendix B.3, agent 2 samples first action 0: s1

2 = 0. The expected additional gain form the
second search for agent 2 is P1(q0)t∅(q0), where P1(q0) is the posterior probability that action 1 was
not sampled by agent 1 given that action 0 of quality q0 was taken. Here,

P1(q0) = N(q0)
D(q0) ,

with
N(q0) := Pσ

(
s1

1 = 0, c1 > t∅(q0)
)

= 1
2PC

(
c1 > t∅(q0)

)
, (16)

and

D(q0) := Pσ
(
s1

1 = 0, c1 > t∅(q0)
)

+ Pσ
(
s1

1 = 1, c1 < t∅(q1), q0 > q1
)

+ Pσ
(
s1

1 = 0, c1 ≤ t∅(q0), q0 > q1
)

+ 1
2Pσ

(
s1

1 = 0, c1 ≤ t∅(q0), q0 = q1
)

= 1
2

[
PC
(
c1 > t∅(q0)

)
+ PC×Q

(
c1 < t∅(q1), q0 > q1

)
(17)

+ PC×Q
(
c1 ≤ t∅(q0), q0 > q1

)
+ 1

2PC×Q
(
c1 ≤ t∅(q0), q0 = q1

)]
.

Above, I denote with PC×Q the product measure PC × PQ and with c1 agent 1’s search cost. To
derive an expression for N(q0) and P1(q0) I assumed that agent 1 breaks ties uniformly at random
at the first search stage and at the choice stage. The tie-breaking rule does not affect the results.21

By straightforward calculations:

t∅(0) = 1
2 , t∅(49/100) = 51

400 , t∅(51/100) = 49
400 , and t∅(1) = 0.

Moreover,
PC
(
c1 > t∅(49/100)

)
= 67

100 and PC
(
c1 > t∅(51/100)

)
= 99

100 ,

PC×Q
(
c1 < t∅(q1), q1 < 49/100

)
= 100

400 and PC×Q
(
c1 < t∅(q1), q1 < 51/100

)
= 133

400 ,

PC×Q
(
c1 ≤ t∅(49/100), 49/100 > q1

)
+ 1

2PC×Q
(
c1 ≤ t∅(49/100), 49/100 = q1

)
= 99

800 ,

21The same remarks apply to Example 6.
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and

PC×Q
(
c1 ≤ t∅(51/100), 51/100 > q1

)
+ 1

2PC×Q
(
c1 ≤ t∅(51/100), 51/100 = q1

)
= 5

800 .

Therefore,
P1(49/100) = 536

800 and P1(51/100) = 44
59 .

Note that t∅(49/100) > t∅(51/100), whereas P1(49/100) < P1(51/100).
To sum up,

P1(49/100)t∅(49/100) ≈ 0.086 < 0.091 ≈ P1(51/100)t∅(51/100).

That is, agent 2’s expected additional gain from the second search is smaller when q0 = 49/100
than when q0 = 51/100. Thus, agent 2’s incentive to explore increases as the quality of the first
action sampled increases. In particular, if agent 2’s search cost is 9/100, he samples the second
action after sampling an action of quality 51/100, but discontinues search after sampling an action
of quality 49/100. �

Example 6. Suppose the qualities of the two actions are drawn uniformly at random from{
0, 1

3 ,
2
3 , 1

}
. Moreover, let

{
0, 1

15 ,
1
3

}
be the support of the search cost distribution, with

PC(c = 0) = 1
4 , PC(c = 1/15) = 1

4 , and PC(c = 1/3) = 1
2 .

As in Example 5, assume a1 = 0, and that agent 2 observes agent 1’s action. Thus, agent 2
samples first action 0. Now,

t∅(0) = 1
2 , t∅(1/3) = 1

4 , t∅(2/3) = 1
12 , and t∅(1) = 0.

Moreover,
PC
(
c1 > t∅(1/3)

)
= 1

2 and PC
(
c1 > t∅(2/3)

)
= 1

2 ,

PC×Q
(
c1 < t∅(q1), q1 < 1/3

)
= 1

4 and PC×Q
(
c1 < t∅(q1), q1 < 2/3

)
= 3

8 ,

PC×Q
(
c1 ≤ t∅(1/3), 1/3 > q1

)
+ 1

2PC×Q
(
c1 ≤ t∅(1/3), 1/3 = q1

)
= 3

16 ,

and
PC×Q

(
c1 ≤ t∅(2/3), 2/3 > q1

)
+ 1

2PC×Q
(
c1 ≤ t∅(2/3), 2/3 = q1

)
= 5

16 .

Therefore,
P1(1/3) = 8

15 and P1(2/3) = 8
19 ,

so that now t∅(1/3) > t∅(2/3) and P1(1/3) > P1(2/3).
To sum up,

P1(1/3)t∅(1/3) = 2
15 >

2
57 = P1(2/3)t∅(2/3).

That is, agent 2’s expected additional gain from the second search is larger when q0 = 1/3 than
when q0 = 2/3. Thus, agent 2’s incentive to explore increases as the quality of the first action
sampled decreases. In particular, if agent 2’s search cost is 1/15, he samples the second action after
sampling an action of quality 1/3, but does not after sampling an action of quality 2/3. �
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B Proofs

B.1 Proofs for Section 4.2.1

Preliminaries
The first lemma provides an obvious sufficient condition for asymptotic learning.

Lemma 1. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. If

lim
n→∞

Pσ
(
s1
n ∈ arg max

x∈X
qx

)
= 1,

then asymptotic learning occurs in equilibrium σ.

Proof. In any equilibrium σ ∈ ΣS , each agent takes the action with the highest quality among
those he has sampled. Since each agent must sample at least one action, the claim follows. �

The next lemma shows that each agent does at least as well as the first agent in terms of the
probability of sampling first the action with the highest quality.

Lemma 2. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. Then,

Pσ
(
s1
n ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1

1 ∈ arg max
x∈X

qx

)
for all n ∈ N.

Proof. For n = 1, the claim trivially holds. Now fix any agent n > 1 and let b, with 0 ≤ b < n,
denote agent n’s chosen neighbor. First, suppose b = 0. Since b = 0 ⇐⇒ Bn = ∅, conditional on
γn(B(n)) = 0 agent n faces the same problem as the first agent. Therefore,

Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = 0

)
= Pσ

(
s1

1 ∈ arg max
x∈X

qx

)
.

Since agent 1’s decision of which action to sample first is independent of the realization of agent
n’s neighborhood, the previous equality is equivalent to

Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = 0

)
= Pσ

(
s1

1 ∈ arg max
x∈X

qx
∣∣∣ γn(B(n)) = 0

)
. (18)

Second, suppose 0 < b < n, so that Bn 6= ∅. By the characterization of the equilibrium decision s1
n

in Section 3.2.2,

Pσ
(
Es1

n
n | cn, Bn, ak for all k ∈ Bn

)
≤ Pσ

(
Es1

1
n | cn, Bn, ak for all k ∈ Bn

)
holds true for all realizations of cn ∈ C, Bn ∈ 2Nn \ {∅}, and ak ∈ X for all k ∈ Bn. By integrating
over all possible private search costs and actions of the agents in the neighborhood, we obtain

Pσ
(
Es1

n
n | Bn

)
≤ Pσ

(
Es1

1
n | Bn

)
for all Bn ∈ 2Nn \ {∅}. Integrating further over all Bn such that γn(Bn) = b we have

Pσ
(
Es1

n
n | γn(B(n)) = b

)
≤ Pσ

(
Es1

1
n | γn(B(n)) = b

)
.
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Therefore, conditional on γn(B(n)) = b, the marginal distribution of the quality of action s1
n first-

order stochastically dominates the marginal distribution of the quality of action s1
1. Hence,

Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
≥ Pσ

(
s1

1 ∈ arg max
x∈X

qx
∣∣∣ γn(B(n)) = b

)
. (19)

The desired result obtains by observing that

Pσ
(
s1
n ∈ arg max

x∈X
qx

)
=

n−1∑
b=0

Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
Q
(
γn(B(n)) = b

)

≥
n−1∑
b=0

Pσ
(
s1

1 ∈ arg max
x∈X

qx
∣∣∣ γn(B(n)) = b

)
Q
(
γn(B(n)) = b

)

= Pσ
(
s1

1 ∈ arg max
x∈X

qx

)
,

where the two equalities hold by the law of total probability and the inequality holds by (18) and
(19). �

Proof of Proposition 2
The proof consists of two parts. In the first part, I construct two sequences, (αk)k∈N and (φk)k∈N,
such that for all k ∈ N, there holds

Pσ
(
s1
n ∈ arg max

x∈X
qx

)
≥ φk for all n ≥ αk. (20)

In the second part, I show that φk → 1 as k → ∞. The desired result follows by combining these
facts with Lemma 1.

Part 1. By assumptions (a) and (c) of the proposition, for all positive integer α and all ε > 0,
there exist a positive integer N(α, ε) and a sequence of neighbor choice functions (γk)k∈N such that

Q
(
γn((B(n)) = b, b < α

)
<
ε

2 , (21)

and

Pσ
(
Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n))

)
< Z

(
Pσ
(
s1
γn(B(n)) ∈ arg max

x∈X
qx

))
− ε

)
<
ε

2 (22)

for all n ≥ N(α, ε). Now, set φ1 := 1
2 and α1 := 1, and define (φk)k∈N and (αk)k∈N recursively by

φk+1 := φk + Z(φk)
2 , and αk+1 := N(αk, εk),

where the sequence (εk)k∈N is defined by

εk := 1
2

(
1 + Z(φk)−

√
1 + 2φk + Z(φk)2

)
.

Given the assumptions on Z, these sequences are well-defined. I use induction on the index k to
prove relation (20). Since the qualities of the two actions are i.i.d. draws and agent 1 has no a
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priori information,

Pσ
(
s1

1 ∈ arg max
x∈X

qx

)
= 1

2 . (23)

From Lemma 2,

Pσ
(
s1
n ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1

1 ∈ arg max
x∈X

qx

)
(24)

for all n ∈ N. From (23) and (24) we have

Pσ
(
s1
n ∈ arg max

x∈X
qx

)
≥ 1

2 for all n ≥ 1,

which together with α1 = 1 and φ1 = 1
2 establishes relation (20) for k = 1. Assume that relation

(20) holds for an arbitrary k, that is

Pσ
(
s1
j ∈ arg max

x∈X
qx

)
≥ φk for all j ≥ αk, (25)

and consider some agent n ≥ αk+1. To establish (20) for n ≥ αk+1 observe that

Pσ
(
s1
n ∈ arg max

x∈X
qx

)
=

n−1∑
b=0

Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ γn((B(n)) = b

)
Q
(
γn((B(n)) = b

)
≥ (1− εk) (Z(φk)− εk)
≥ φk+1,

where the inequality follows from (21) and (22), the inductive hypothesis in (25), and the assump-
tion that Z is increasing.

Part 2. By assumption (b) of the proposition, Z(β) ≥ β for all β ∈ [1/2, 1]; it follows from the
definition of φk that (φk)k∈N is a non-decreasing sequence. Since it is also bounded, it converges to
some φ∗. Taking the limit in the definition of φk, we obtain

2φ∗ = 2 lim
k→∞

φk = lim
k→∞

[φk + Z(φk)] = φ∗ + Z(φ∗),

where the third equality holds by continuity of Z. This shows that φ∗ = Z(φ∗), i.e. φ∗ is a fixed
point of Z. Since the unique fixed point of Z is 1, we have φk → 1 as k →∞, as claimed. �

Proof of Proposition 3
Proposition 3 follows by combining several lemmas, which I next present.

Hereafter, let a collective search environment S, a state of the world ω := (q0, q1) ∈ Ω, an
equilibrium σ ∈ ΣS , a sequence of neighbor choice functions (γn)n∈N, and an agent n ∈ N be fixed.
Moreover, let b, with 0 ≤ b < n, be agent n’s chosen neighbor.

Let s̃1
n be agent n’s coarse optimal decision at the first search stage when he only uses information

from neighbor b.22. The optimal search policy, as characterized in Section 3.2.2, requires

s̃1
n ∈ arg min

x∈X
Pσ
(
Ex
n | γn(B(n)) = b, ab

)
,

22By definition of neighbor choice function, the fictitious agent 0 is agent n’s chosen neighbor iff Bn = ∅.
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where indifference is resolved according to agent n’s mixed strategy.
Suppose the probability that none of the agents in B̂(n, ab) sampled both actions is smaller

than the probability that none of the agents in B̂(n,¬ab) sampled both actions whenever agent n’s
neighbor choice function selects agent b, with 0 ≤ b < n. That is,

Pσ
(
Eab
n | γn(B(n)) = b

)
≤ Pσ

(
E¬abn | γn(B(n)) = b

)
. (26)

Then, agent n samples first action ab: s̃1
n = ab. Hereafter, assume that agent n samples first action

ab in case of indifference. The assumption does not affect the results. The next lemma summarizes.

Lemma 3. Suppose Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b) and γn(B(n)) = b. Then,

the coarse version s̃1
n of agent n’s equilibrium strategy at the first search stage is s̃1

n = ab.

Remark 5. Since γn(B(n)) = 0 iff B(n) = ∅, it is without loss of generality to impose s̃1
n = s1

n

conditional on γn(B(n)) = 0. That is, conditional on γn(B(n)) = 0, the coarse version of agent n’s
equilibrium decision of which action to sample first coincides with his equilibrium decision.

The next lemma shows that network topologies where Q(|B(n)| ≤ 1) = 1 for all n satisfy
condition (26). In particular, this condition is satisfied by all chosen neighbor topologies.

Lemma 4. Suppose that the network topology (B,FB,Q) satisfies Q(|B(n)| ≤ 1) = 1 for all n ∈ N.
Then, Pσ(Eab

n | B̂(n) = B̂n) ≤ Pσ(E¬abn | B̂(n) = B̂n) for all agents n and b, with 0 ≤ b < n, and
for all realizations B̂n that occurs with positive probability. It follows that Pσ(Eab

n | γn(B(n)) =
b) ≤ Pσ(E¬abn | γn(B(n)) = b) for all n and b, with 0 ≤ b < n.

Proof. Proceed by induction. The first agent has empty neighborhood. Hence, his personal
subnetworks relative to the two actions are empty and the statement is vacuously true.

Now suppose Pσ(Eab
n | B̂(n) = B̂n) ≤ Pσ(E¬abn | B̂(n) = B̂n) for all n ≤ k and all B̂n that

occurs with positive probability. Given a realization B̂k+1 of B̂(k+1), if Bk+1 = ∅, then agent k+1
faces the same situation as the first agent, and the desired conclusion follows. If Bk+1 = {b}, take
γk+1({b}) = b and let (π1, . . . , πl) be the sequence of agents in B̂k+1∪{k + 1}. That is, {π1, . . . , πl}
is such that π1 = min B̂k+1, πl = k + 1 and, for all g with 1 < g ≤ l, Bπg = {πg−1}. Moreover, for
all g with 1 < g ≤ l, say that agent πg−1 is the immediate predecessor of agent πg in B̂k+1. When
B̂k+1 = {b}, the desired result trivially holds. When B̂k+1 contains more than one agent, the desired
result follows by observing that, under the inductive hypothesis and the equilibrium decision rule,
each agent in {π1, . . . , πl−1} samples first the action taken by his immediate predecessor. �

Definition 11. Fix a state of the world ω := (q0, q1) ∈ Ω and an equilibrium σ ∈ ΣS . The following
objects are defined:

qmin := min {q0, q1} ,
qmax := max {q0, q1} ,

P σ
b,n(qmin) := Pσ

(
E
s1
b
b

∣∣∣ γn(B(n)) = b, qs1
b

= qmin

)
= Pσ

(
E
s1
b
b

∣∣∣ γn(B(n)) = b, s1
b 6∈ arg max

x∈X
qx

)
,

P σ
b,n(qmax) := Pσ

(
E
s1
b
b

∣∣∣ γn(B(n)) = b, qs1
b

= qmax

)
= Pσ

(
E
s1
b
b

∣∣∣ γn(B(n)) = b, s1
b ∈ arg max

x∈X
qx

)
,
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β := Pσ
(
s1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
.

Remark 6. In any σ ∈ ΣS , β ≥ 1
2 for all b ∈ N. This is so because the distribution of the quality

of the first action sampled by an agent first-order stochastically dominates the distribution of the
quality of the other action.

The next two lemmas provide an expression for the probability of agent n sampling first the best
action when using s̃1

n, conditional on agent b being selected by agent n’s neighbor choice function,
in terms of the probability β of agent b doing so, the private search cost distribution, the function
t∅(·) defined in (2), and the thresholds P σ

b,n(qmin) and P σ
b,n(qmax).

Lemma 5. Suppose Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b). Then,

Pσ
(
s̃1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)

= Pσ
(
s1
b ∈ arg max

x∈X
qx | γn(B(n)) = b

)
(27)

+ Pσ
(
s2
b = ¬s1

b | γn(B(n)) = b
)(

1− Pσ
(
s1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

))
.

Proof. By Lemma 3,

Pσ
(
s̃1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
= Pσ

(
ab ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
.

Moreover,

Pσ
(
ab ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)

= Pσ
(
ab ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b, s2

b = ¬s1
b

)
Pσ
(
s2
b = ¬s1

b | γn(B(n)) = b
)

+ Pσ
(
ab ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b, s2

b = ns

)
Pσ
(
s2
b = ns | γn(B(n)) = b

)
= Pσ

(
s2
b = ¬s1

b | γn(B(n)) = b
)

+ Pσ
(
s1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)(
1− Pσ

(
s2
b = ¬s1

b | γn(B(n)) = b
))

= Pσ
(
s1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)

+ Pσ
(
s2
b = ¬s1

b | γn(B(n)) = b
)(

1− Pσ
(
s1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

))
.

Here: the first equality holds by the law of total probability; the second equality holds because
whenever agent b samples both actions, s2

b = ¬s1
b , he takes the one with the highest quality, so that

Pσ(ab ∈ arg max x∈X qx | γn(B(n)) = b, s2
b = ¬s1

b) = 1, and when agent b only samples one action,
s2
b = ns, he takes that action, so that Pσ(ab ∈ arg max x∈X qx | γn(B(n)) = b, s2

b = ns) = Pσ(s1
b ∈

arg max x∈X qx | γn(B(n)) = b). The desired result follows. �
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Lemma 6. Suppose Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b). Then,

Pσ
(
s̃1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
= β + (1− β)

[
βFC

(
P σ
b,n(qmax)t∅(qmax)

)
+ (1− β)FC

(
P σ
b,n(qmin)t∅(qmin)

)]
.

Proof. By Lemma 5,

Pσ
(
s̃1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
= β + Pσ

(
s2
b = ¬s1

b | γn(B(n)) = b
)
(1− β). (28)

Moreover, by the law of total probability,

Pσ
(
s2
b = ¬s1

b | γn(B(n)) = b
)

= Pσ
(
s2
b = ¬s1

b

∣∣∣ γn(B(n)) = b, s1
b ∈ arg max

x∈X
qx

)
Pσ
(
s1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)

+ Pσ
(
s2
b = ¬s1

b

∣∣∣ γn(B(n)) = b, s1
b 6∈ arg max

x∈X
qx

)
Pσ
(
s1
b 6∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
(29)

= β Pσ
(
s2
b = ¬s1

b

∣∣∣ γn(B(n)) = b, s1
b ∈ arg max

x∈X
qx

)

+ (1− β)Pσ
(
s2
b = ¬s1

b

∣∣∣ γn(B(n)) = b, s1
b 6∈ arg max

x∈X
qx

)
.

By the characterization of equilibrium strategies in Section 3.2.2 we have, conditional on
γn(B(n)) = b and s1

b ∈ arg max x∈X qx,

s2
b = ¬s1

b ⇐⇒ cb ≤ P σ
b,n(qmax)t∅(qmax),

and, conditional on γn(B(n)) = b and s1
b 6∈ arg max x∈X qx,

s2
b = ¬s1

b ⇐⇒ cb ≤ P σ
b,n(qmin)t∅(qmin),

where I assume that agent n samples the second action in case of indifference.23 It follows that

Pσ
(
s2
b = ¬s1

b

∣∣∣ γn(B(n)) = b, s1
b ∈ arg max

x∈X
qx

)
= FC

(
P σ
b,n(qmax)t∅(qmax)

)
,

and that

Pσ
(
s2
b = ¬s1

b

∣∣∣ γn(B(n)) = b, s1
b 6∈ arg max

x∈X
qx

)
= FC

(
P σ
b,n(qmin)t∅(qmin)

)
.

Thus, equation (29) can be rewritten as

Pσ
(
s2
b = ¬s1

b | γn(B(n)) = b
)

= βFC
(
P σ
b,n(qmax)t∅(qmax)

)
+ (1− β)FC

(
P σ
b,n(qmin)t∅(qmin)

)
. (30)

The desired result follows by combining (28) and (30). �

23This assumption does not affect the results.
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The previous lemma shows that the quantity

(1− β)
[
βFC

(
P σ
b,n(qmax)t∅(qmax)

)
+ (1− β)FC

(
P σ
b,n(qmin)t∅(qmin)

)]
acts as an improvement in the probability that agent n samples first the best action over his chosen
neighbor’s probability. This improvement term is still unsuitable for the analysis to come because
it depends on P σ

b,n(qmin) and P σ
b,n(qmax), which are difficult to handle. The next lemma provides a

simple lower bound on the amount of this improvement. It also establishes that this lower bound
is uniformly bounded away from zero whenever β < 1, and that it is non-negative when β = 1.

Lemma 7. Suppose Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b). Then,

Pσ
(
s̃1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
≥ β + (1− β)2FC

(
(1− β)t∅(qmax)

)
.

Proof. Whenever at least one of the agents in the personal subnetwork of agent b relative to action
s1
b samples both actions, s1

b ∈ arg max x∈X qx. Thus, β ≥ 1− Pσ
(
E
s1
b
b | γn(B(n)) = b

)
, or

1− β ≤ Pσ
(
E
s1
b
b

∣∣∣ γn(B(n)) = b
)
. (31)

Moreover, by the law of total probability,

Pσ
(
E
s1
b
b

∣∣∣ γn(B(n)) = b
)

= Pσ
(
E
s1
b
b

∣∣∣ γn(B(n)) = b, s1
b ∈ arg max

x∈X
qx

)
Pσ
(
s1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)

+ Pσ
(
E
s1
b
b

∣∣∣ γn(B(n)) = b, s1
b 6∈ arg max

x∈X
qx

)
Pσ
(
s1
b 6∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
= βP σ

b,n(qmax) + (1− β)P σ
b,n(qmin).

(32)

Combining (31) and (32) yields

1− β ≤ βP σ
b,n(qmax) + (1− β)P σ

b,n(qmin), (33)

and therefore
max

{
P σ
b,n(qmin), P σ

b,n(qmax)
}
≥ 1− β. (34)

Finally, observe that

Pσ
(
s̃1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
= β + (1− β)

[
βFC

(
P σ
b,n(qmax)t∅(qmax)

)
+ (1− β)FC

(
P σ
b,n(qmin)t∅(qmin)

)]
≥ β + (1− β)

[
(1− β)FC

(
P σ
b,n(qmax)t∅(qmax)

)
+ (1− β)FC

(
P σ
b,n(qmin)t∅(qmin)

)]
= β + (1− β)2

[
FC
(
P σ
b,n(qmax)t∅(qmax)

)
+ FC

(
P σ
b,n(qmin)t∅(qmin)

)]
≥ β + (1− β)2

[
FC
(
P σ
b,n(qmax)t∅(qmax)

)
+ FC

(
P σ
b,n(qmin)t∅(qmax)

)]
≥ β + (1− β)2 max

{
FC
(
P σ
b,n(qmax)t∅(qmax)

)
, FC

(
P σ
b,n(qmin)t∅(qmax)

)}
≥ β + (1− β)2FC

(
(1− β)t∅(qmax)

)
.
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Here, the first equality holds by Lemma 6; the first inequality holds because, as β ≥ 1/2 by Remark
6, β ≥ (1−β); the second inequality holds because t∅(qmax) ≤ t∅(qmin) and the CDF FC is increasing;
the third inequality holds because FC is non-negative; the last inequality follows from

max
{
FC
(
P σ
b,n(qmax)t∅(qmax)

)
, FC

(
P σ
b,n(qmin)t∅(qmax)

)}
≥ FC

(
(1− β)t∅(qmax)

)
,

which holds because of (34) and the fact that FC is increasing. The desired result follows. �

The previous lemmas describe the improvement a single agent can make over his neighbor by
employing a heuristic that discards the information from all other neighbors. To study the limiting
behavior of these improvements, I introduce the function Z : [1/2, 1] → [1/2, 1] defined pointwise
by

Z(β) := β + (1− β)2FC
(
(1− β)t∅(qmax)

)
. (35)

Hereafter, I call (1− β)2FC((1−β)t∅(qmax)) the improvement term of function Z. Lemma 7 estab-
lishes that, when Pσ(Eab

n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b), we have

Pσ
(
s̃1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
= Z

(
Pσ
(
s1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

))
.

That is, the function Z acts as an improvement function for the evolution of the probability of
searching first for the best action. The next lemma presents some useful properties of Z.

Lemma 8. The function Z : [1/2, 1]→ [1/2, 1], defined by (35), satisfies the following properties:

(a) For all β ∈ [1/2, 1], Z(β) ≥ β.

(b) If the search technology features search costs that are not bounded away from zero, then Z(β) >
β for all β ∈ [1/2, 1).

(c) The function Z is left-continuous and has no upward jumps: Z(β) = limr↑β Z(r) ≥ limr↓β Z(r).

Proof. Since FC is a CDF and (1− β)2 ≥ 0, the improvement term of function Z is always
non-negative. Part (a) follows.

For all β ∈ [1/2, 1), (1− β)t∅(qmax) > 0 and so, if search costs are not bounded away from zero,
FC((1 − β)t∅(qmax)) > 0.24 Since also (1− β)2 > 0 for all β ∈ [1/2, 1), the improvement term of
function Z is positive and so part (b) holds.

For part (c), set α := (1 − β)t∅(qmax). Since FC is a CDF, it is right-continuous and has no
downward jumps in α. Therefore, FC is left-continuous and has no upward jumps in β. Since β
and (1− β)2 are continuous functions of β, and so also left-continuous with no upward jumps, the
desired result follows because the product and the sum of left-continuous functions with no upward
jumps is left-continuous with no upward jumps. �

Next, I construct a related function Z that is monotone and continuous while maintaining the
same improvement properties of Z. In particular, define Z : [1/2, 1]→ [1/2, 1] as

Z(β) := 1
2

(
β + sup

r∈[1/2,β]
Z(r)

)
. (36)

24Note that t∅(qmax) = 0 if qs1
b

= qmax = max supp
(
PQ
)

whenever such sup exists as a real number. However, in
such cases we would trivially have β = 1, which is not the case considered here.
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Lemma 9. The function Z : [1/2, 1]→ [1/2, 1] defined by (36) satisfies the following properties:

(a) For all β ∈ [1/2, 1], Z(β) ≥ β.

(b) If the search technology features search costs that are not bounded away from zero, then Z(β) >
β for all β ∈ [1/2, 1).

(c) The function Z is increasing and continuous.

Proof. Parts (a) and (b) immediately result from the corresponding parts of Lemma 8.
The function supr∈[1/2,β]Z(r) is non-decreasing and the function β is increasing. Thus, the

average of these two functions, which is Z, is an increasing function, establishing the first part of
(c). Finally, I show that Z is continuous. To establish continuity in [1/2, 1), I argue by contradic-
tion. Suppose that Z is discontinuous at some β′ ∈ [1/2, 1). This implies that supr∈[1/2,β]Z(r) is
discontinuous at β′. Since supr∈[1/2,β]Z(r) is a non-decreasing function, it must be that

lim
β↓β′

sup
r∈[1/2,β]

Z(r) > sup
r∈[1/2,β′]

Z(r),

from which it follows that there exists some ε > 0 such that for all δ > 0

sup
r∈[1/2,β′+δ]

Z(r) > Z(β) + ε for all β ∈ [1/2, β′) .

This contradicts that the function Z has no upward jumps, which was established as property (c)
in Lemma 8. Continuity of Z at β = 1 follows from part (a). �

The next lemma shows that the function Z is also a improvement function for the evolution of
the probability of searching first for the action with highest quality.

Lemma 10. Suppose that Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b). Then,

Pσ
(
s̃1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
≥ Z

(
Pσ
(
s1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

))
.

Proof. If Z(β) = β, the result follows from Lemma 6. Suppose next that Z(β) > β. By (36), this
implies that Z(β) < supr∈[1/2,β]Z(r). Therefore, there exists β ∈ [1/2, β] such that

Z(β) ≥ Z(β). (37)

I next show that Pσ(s̃1
n ∈ arg max x∈X qx | γn(B(n)) = b) ≥ Z(β). Agent n can always make his

decision even coarser by choosing not to observe agent b’s choice with some probability. Suppose
that instead of considering b’s action directly, agent n bases his decision of which action to sample
first on the observation of a fictitious agent whose action, denoted by ãb, is generated as

ãb =


ab with probability (2β − 1)/(2β − 1)
0 with probability (β − β)/(2β − 1)
1 with probability (β − β)/(2β − 1),

(38)

with the realization of ãb independent of the rest of n’s information set. Under the assumption
Pσ(Eab

n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b), we have

Pσ
(
E ãb
n | γn(B(n)) = b

)
≤ Pσ

(
E¬ãbn | γn(B(n)) = b

)
. (39)
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The relation in (39), together with the characterization of the equilibrium search policy in Section
3.2.2, implies that agent n samples first action ãb upon observing the choice of the fictitious agent.
That is, denoting with ˜̃s1

n the first action sampled by agent n upon observing the choice of the ficti-
tious agent, ˜̃s1

n = ãb. Moreover, the assumption Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b)

and (38) also imply that Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E ãb

n | γn(B(n)) = b). Therefore, the distri-
bution of the quality of action ab first-order stochastically dominates the distribution of the quality
of action ãb. Since s̃1

n = ab and ˜̃s1
n = ãb, it follows that

Pσ
(
s̃1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
≥ Pσ

(˜̃s1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
. (40)

Now denote with s̃1
b the decision of the fictitious agent about which action to sample first. From

(38), one can think of s̃1
b as generated as

s̃1
b =


s1
b with probability (2β − 1)/(2β − 1)

0 with probability (β − β)/(2β − 1)
1 with probability (β − β)/(2β − 1).

Therefore,

Pσ
(
s̃1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
= Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
2β − 1
2β − 1

+ Pσ
(

0 ∈ arg max
x∈X

qx
∣∣∣ γn(B(n)) = b

)
β − β
2β − 1

+ Pσ
(

1 ∈ arg max
x∈X

qx
∣∣∣ γn(B(n)) = b

)
β − β
2β − 1

= β
2β − 1
2β − 1 + (β + (1− β)) β − β2β − 1

= β.

Lemma 7 implies that the first action sampled by agent n based on the observation of this fictitious
agent is the one with the highest quality with probability at least Z(β), that is

Pσ
(˜̃s1

n ∈ arg max
x∈X

qx
∣∣∣ γn(B(n)) = b

)
≥ Z(β). (41)

Since Z(β) ≥ Z(β) (see equation (37)), the desired result follows from (40) and (41). �

It remains to show that the equilibrium search policy s1
n does at least as well as its coarse

version s̃1
n in terms of sampling first the action with the highest quality given γn(B(n)) = b. This

is established with the next lemma and completes the proof of Proposition 3.

Lemma 11. For all agents n and any b, with 0 ≤ b < n, we have

Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
≥ Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
.

Proof. Fix any n ∈ N. If b = 0, then s̃1
n = s1

n by Remark 5, and the claim trivially holds. Now
suppose 0 < b < n, so that Bn 6= ∅. By the characterization of the equilibrium decision s1

n in
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Section 3.2.2,

Pσ
(
Es1

n
n | cn, Bn, ak for all k ∈ Bn

)
≤ Pσ

(
E s̃1

n
n | cn, Bn, ak for all k ∈ Bn

)
holds true for all realizations of cn ∈ C, Bn ∈ 2Nn \ {∅}, and ak ∈ X for all k ∈ Bn. By integrating
over all possible private search costs and actions of the agents in the neighborhood, we obtain

Pσ
(
Es1

n
n | Bn

)
≤ Pσ

(
E s̃1

n
n | Bn

)
(42)

for all Bn ∈ 2Nn \ {∅}. Integrating further over all Bn such that γn(Bn) = b we conclude

Pσ
(
Es1

n
n | γn(B(n)) = b

)
≤ Pσ

(
E s̃1

n
n | γn(B(n)) = b

)
.

Then, conditional on γn(B(n)) = b, the marginal distribution of the quality of action s1
n first-order

stochastically dominates the marginal distribution of the quality of action s̃1
n. Therefore,

Pσ
(
s1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
≥ Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣∣ γn(B(n)) = b

)
,

as desired. �

B.2 Proofs for Section 4.3

Preliminaries
Definition 12. Let qNS, QNS, and ΩNS be defined as follows:

• qNS := inf {q̃ ∈ supp (PQ) : 1–(a) and 1–(b) in Assumption 1 hold };

• QNS :=
{
q̃ ∈ Q : q̃ ≥ qNS

}
;

• ΩNS := QNS ×QNS.

In words, ΩNS consists of all states of the world ω where, with positive probability, an agent with
empty neighborhood does not sample the second action independently of which action he samples
first. By the first condition in Assumption 1, there exists some δ > 0 such that PQ(QNS) ≥

√
δ

and so, by definition of product measure,

PΩ
(
ΩNS

)
= PQ

(
QNS

)
× PQ

(
QNS

)
≥ δ. (43)

If ω ∈ ΩNS, an agent with nonempty neighborhood does not sample the second action either with
positive probability, independently of which action he samples first (see the characterization of
equilibrium search policies in Section 3.2). Finally, by Assumption 1, conditional on ω ∈ ΩNS, the
two actions have different quality with positive probability.

Fix a collective search environment S. Asymptotic learning occurs in equilibrium σ ∈ ΣS only
if the probability of agent n taking the action with the lowest quality converges to zero with respect
to Pσ as n goes to infinity. Because of Assumption 1, a necessary condition for this to happen is
that the probability of no agent in B̂(n)∪{n} sampling both actions converges to zero as n goes to
infinity with respect to Pσ. If this were not the case, there would be a subsequence of agents who,
with probability bounded away from zero, only observe (directly or indirectly) agents who have
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not compared the quality of the two actions (as none of the agents in their personal subnetworks
has sampled both actions), and do not make this comparison either (as they do not search for
the second alternative). Asymptotic learning would trivially fail as the only way to ascertain the
relative quality of the two actions is to sample both of them. The next lemma follows.

Lemma 12. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. If asymp-
totic learning occurs in equilibrium σ, then

lim
n→∞

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
= 0.

Proof of Proposition 4
Let σ ∈ ΣS be arbitrary. In view of Lemma 12, to prove Theorem 4 it is enough to show that

lim sup
n→∞

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
> 0.

Since the network topology has non-expanding subnetworks, there exist some positive integer
K, some real number ε > 0, and a subsequence of agents N such that

Q
(∣∣∣B̂(n)

∣∣∣ < K
)
≥ ε for all n ∈ N . (44)

For all n ∈ N , by the law of total probability we have

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
= Pσ

(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K

)
Q
(∣∣∣B̂(n)

∣∣∣ < K
)

+ Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ ≥ K

)
Q
(∣∣∣B̂(n)

∣∣∣ ≥ K
)

(45)

≥ Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K

)
Q
(∣∣∣B̂(n)

∣∣∣ < K
)

≥ εPσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K

)
,

where the last inequality follows from (44). By the law of total probability again, we also have

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K

)
= Pσ

(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K,ω ∈ ΩNS

)
PΩ
(
ω ∈ ΩNS

)
+ Pσ

(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K,ω 6∈ ΩNS

)
PΩ
(
ω 6∈ ΩNS

)
(46)

≥ Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K,ω ∈ ΩNS

)
PΩ
(
ω ∈ ΩNS

)
≥ δPσ

(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K,ω ∈ ΩNS

)
,

where the last inequality holds by (43). Then, by (45) and (46), for all agents n ∈ N we have

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
≥ εδPσ

(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K,ω ∈ ΩNS

)
.

(47)

Let Cσ(qNS) denote the set of all search costs for which, in equilibrium σ, an agent with empty
neighborhood decides not to sample the second action when the first action he samples has quality
qNS. For all ω ∈ ΩNS, by the results in Section 3.2, any agent k with search cost ck ∈ Cσ(qNS)
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adopts strategy s2
k = ns at the second search stage independently of his neighborhood realization

Bk, the actions of his neighbors, and the quality of the first action sampled. Then,

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K,ω ∈ ΩNS

)
≥ Pσ

(
ck ∈ Cσ

(
qNS

)
for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K,ω ∈ ΩNS

)
.

(48)

Moreover, as individual search costs are independent of the network topology and the realized
quality of the two actions,

Pσ
(
ck ∈ Cσ

(
qNS

)
for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K,ω ∈ ΩNS

)
= Pσ

(
ck ∈ Cσ

(
qNS

)
for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K

)
.

(49)

Finally, as
∣∣∣B̂(n)

∣∣∣ < K ⇐⇒
∣∣∣B̂(n) ∪ {n}

∣∣∣ ≤ K and individual search costs are independent of the
network topology and i.i.d. across agents, we have

Pσ
(
ck ∈ Cσ

(
qNS

)
for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K

)
≥ Pσ

(
c1 ∈ Cσ

(
qNS

))K
(50)

> 0,

where the strict inequality holds because Pσ(c1 ∈ Cσ(qNS)) > 0 by the first condition in Assumption
1. Together, (48), (49), and (50) yield that

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣∣ ∣∣∣B̂(n)
∣∣∣ < K,ω ∈ ΩNS

)
> 0. (51)

As ε, δ > 0, from (47) and (51) we conclude that

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
> 0

for all agents n in the subsequence N , which implies

lim sup
n→∞

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
> 0,

as desired. �

B.3 Preliminaries for Sections 5 and 6

Characterization of Equilibrium Strategies in OIP Networks
Part (a) of Theorem 2 and the results in Section 6 are largely based on the next lemma, which
characterizes equilibrium sequential search policies in OIP networks. Let P1(q) denote the posterior
probability that agent 1 did not sample the second action given that the action he takes has quality
q. The precise functional form of P1(q) is irrelevant for the following argument.

Lemma 13. Let S be a collective search environment where the network topology features obser-
vation of immediate predecessors. Then, in any equilibrium σ ∈ ΣS :

(i) At the first search stage, each agent n ∈ N, with n ≥ 2, samples first the action taken by his
immediate predecessor. That is, s1

n = an−1.
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(ii) At the second search stage, each agent n, with n ≥ 2:

(a) Does not sample action ¬an−1 (i.e. s2
n = ns) if ¬an−1 is revealed to be inferior to agent

n in equilibrium σ.
(b) Samples action ¬an−1 (i.e. s2

n = ¬an−1) if ¬an−1 is not revealed inferior to agent n in
equilibrium σ, and agent n’s search cost cn is smaller than tn(qs1

n
), where the function

tn : Q→ R+ is defined pointwise by

tn
(
qs1
n

)
:= P1

(
qs1
n

)
t∅
(
qs1
n

)
(52)

for n = 2, and pointwise recursively as

tn
(
qs1
n

)
:= P1

(
qs1
n

)( n−1∏
i=2

(
1− FC

(
ti
(
qs1
n

))))
t∅
(
qs1
n

)
(53)

for n > 2.25

Proof. To prove part (i), proceed by induction. Consider agent 2 and his conditional belief over
Ω given that the first agent has taken action a1. For action ¬a1, two mutually exclusive cases are
possible:

1. Agent 1 sampled ¬a1. In this case, q¬a1 ≤ qa1 , as agent 1 picked the best alternative at
the choice stage. If agent 2 knew this to be the case, his conditional belief on Ω would be
PΩ|qa1≥q¬a1

.

2. Agent 1 did not sample ¬a1. If agent 2 knew this to be the case, his posterior belief on action
¬a1 would be the same as the prior PQ.

Then, regardless of the beliefs of agent 2 about agent 1’s search decisions, agent 2’s belief about
the quality of action ¬a1 is strictly first-order stochastically dominated by his beliefs about the
quality of action a1. To see this, note that agent 2 believes that agent 1 has sampled action ¬a1

with positive probability: even if agent 1 sampled a1 first, by the second condition of Assumption
1, with positive probability, his search costs are low enough that he searched further. Therefore,
s1

2 = a1 is agent 2’s optimal policy at the first search stage.
Now consider any agent n > 2. Suppose that all agents up to n − 1 follow this strategy, and

that agent n− 1 selects action an−1. If action ¬an−1 is revealed inferior to agent n in equilibrium
σ, it must be that q¬an−1 ≤ qan−1 , and so action ¬an−1 is not sampled at all. Now suppose that
action ¬an−1 is not revealed inferior to agent n in equilibrium σ. By the same logic as before, n’s
beliefs about the quality of action an−1 strictly first-order stochastically dominate his beliefs about
the quality of action ¬an−1. Therefore, s1

n = an−1, i.e. he will sample action an−1 first.
To establish part (ii)–(a), consider any agent n ≥ 2, and suppose that ¬an−1 is revealed inferior

to agent n in equilibrium σ. Then, there exist j, j+1 ∈ B(n) such that aj = ¬an−1 and aj+1 = an−1.
By part (i) we know that s1

j+1 = ¬an−1. Since agents can only take an action they sampled, it
follows that s2

j+1 = an−1, that is, agent j + 1 has sampled both actions. Then, as agents take
the best action whenever they sample both of them, we have qan−1 ≥ q¬an−1 , and so the expected
additional gain of sampling action ¬an−1 is zero. That s2

n = ns is optimal follows.
For part (ii)–(b), consider any agent n ≥ 2 and suppose that ¬an−1 is not revealed inferior

to agent n in equilibrium σ. In OIP networks, the personal subnetwork of agent n, B̂(n), is
25Hereafter, I assume that agent n samples the second action in case of indifference. This assumption does not

affect the results, but simplifies the derivation of closed form expressions for the tn(·)’s and the ensuing analysis.
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{1, . . . , n− 1} with probability one. Moreover, by part (i), each agent samples first the action
taken by his immediate predecessor. Therefore, none of the agents in the personal subnetwork of
agent n relative to action s1

n has sampled action ¬s1
n only if none of the first n − 1 agents has

sampled it; that is, only if s1
1 = s1

n, and s2
i = ns for 1 ≤ i ≤ n− 1. The thresholds in (52) and (53)

provide an explicit formula for (9) when B̂(n) = {1, . . . , n− 1} with probability one for all n ∈ N.
To see this, proceed by induction. Consider first agent 2. By part (i), s1

2 = a1. Let P1(qs1
2
) be

the posterior probability that agent 1 did not sample action ¬s1
2 given that action s1

2 of quality qs1
2

was taken. Then, agent 2’s expected benefit from the second search is P1(qs1
2
)t∅(qs1

2
), which is the

right-hand side of (52). Now consider any agent n > 2, and let s1
n be the action this agent samples

first. By part (i) and the inductive hypothesis, and since search costs are i.i.d. across agents, it
follows that the probability that no agent in {1, . . . , n− 1} has sampled action ¬s1

n is

P1
(
qs1
n

)( n−1∏
i=2

(
1− FC

(
ti
(
qs1
n

))))
.

Therefore, the right-hand side of (53) gives agent n’s expected benefit from the search follows. The
optimality of the proposed sequential search policy follows from the characterization of individual
equilibrium decisions at the second search stage in Section 3.2.2. �

Fix a state process and a search technology. Lemma 13 implies that, from the viewpoint of the
probability of selecting the best action, the individual search behavior is equivalent across all OIP
networks. In particular, we have the following.

Corollary 1. Let S and S ′ be two collective search environments with identical state process and
search technology. Assume that S is endowed with the complete network, while the network topology
of S ′ is any OIP network. Finally, let σ ∈ ΣS and σ′ ∈ ΣS′, and assume that ties are broken
according to the same criterion in σ and σ′.26 Then, for all n ∈ N,

Pσ
(
an ∈ arg max

x∈X
qx

)
= Pσ′

(
an ∈ arg max

x∈X
qx

)
.

Proof. In OIP networks, each agent starts sampling from the action taken by his immediate
predecessor (cf. Lemma 13), and so asymptotic learning trivially occurs when agent 1 takes the
best action. Moreover, Pσ(a1 ∈ arg max x∈X qx) = Pσ′(a1 ∈ arg max x∈X qx). Therefore, to establish
the result, it suffices to show that Pσ(an ∈ arg max x∈X qx) = Pσ′(an ∈ arg max x∈X qx) holds for all
n ∈ N, with n > 2, whenever agent 1 does not sample the best action at the first search. In turn,
this follows immediately from Lemma 13, which shows that, for all n, the probability that none
of the first n agents has sampled both actions is the same across all OIP networks for any fixed
quality of the action taken by agent 1. �

B.4 Proofs for Section 5.4

Proof of Theorem 2

Proof of part (a). Suppose ω 6∈ Ω(c) and c > 0. Maximal learning requires that the probability
that agent n takes the best action converges to one as n→∞ (see the characterization of maximal

26In particular, assume that agent 1 selects uniformly at random the first action to sample, and that agent n
samples the second action in case of indifference.
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learning in (12)). In turn, this is equivalent to saying that the probability of no agent in B̂(n)∪{n}
sampling both actions converges to zero as n→∞ whenever the quality of the first action sampled
by agent 1 is lower than q(c).27 To establish the failure of maximal learning, I show that the latter
probability remains bounded away from zero for c > 0.

By way of contradiction, suppose that the probability of no agent in B̂(n)∪{n} sampling both
actions converges to zero as n→∞ for any quality q, with q < q(c), that the first action sampled
by agent 1 can take. That is,

lim
n→∞

P1(q)
(

n∏
i=2

(
1− FC(ti(q))

))
= 0

(see the proof of Lemma 13 for how to derive this probability). Hence, the expected additional
gain from the second search for agent n+ 1, given by

P1(q̂)
(

n∏
i=2

(
1− FC(ti(q̂))

))
t∅(q̂)

(see (53) and the proof of Lemma 13), where q̂ is the quality of the action taken by agent n, also
converges to zero as n → ∞ for all q̂ < q(c). Then, there exists an agent Nq̂ + 1 for which the
expected additional gain from the second search falls below c.

By Assumption 2, there exists q̃ in the support of PQ such that: (i) PQ(q̃ < q < q(c)) > 0;
(ii) with positive probability, the first agent does not sample another action if qs1

1
≥ q̃, that is

1−FC(t∅(q̃)) > 0. Hence, with positive probability, agent 1 samples first a suboptimal action with
quality, say, q, and does not search further. Now suppose the first Nq agents all have costs larger
than t∅(q), which occurs with positive probability. By Lemma 13, each of these agents will sample
the suboptimal action with quality q first, and none of these agents will search further. Therefore,
all will take this suboptimal action. Agent Nq + 1 also samples this action first, and does not
search further either because his expected additional gain from the second search is smaller than c.
Since the expected additional gain from the second search in non-increasing in n, there will be no
further search by agents Nq+1 onward, contradicting that the probability of no agent in B̂(n)∪{n}
sampling both actions converges to zero. The desired result follows. �

Proof of part (b). Suppose ω 6∈ Ω(c) and c > 0. Again, I establish that maximal learning fails
by showing that the probability of no agent in B̂(n)∪{n} sampling both actions remains bounded
away from zero as n→∞.

Pick an infinite sequence of agents (π1, π2, . . . , πk, πk+1, . . . ) such that B(π1) = ∅ and πk ∈
B(πk+1) for all agents k ∈ N. Such a sequence must exist with probability one; otherwise, the
network topology has non-expanding subnetworks and maximal learning fails. Moreover, by Lemma
4, each agent in this sequence samples first the action taken by his neighbor.

By way of contradiction, suppose that the probability of no agent in B̂(πk) ∪ {πk} sampling
both actions converges to zero as k → ∞ for any quality q, with q < q(c), that the first action
sampled by agent π1 can take. That is, limk→∞ Pπk+1(q) = 0, where Pπk+1(·) is the function defined
by (8). It follows that the expected additional gain from the second search for agent πk+1, given
by Pπk+1(q̂)t∅(q̂), where q̂ is the quality of the action taken by πk, also converges to zero as k →∞
for all q̂ < q(c). Then, there exists an agent πKq̂ + 1 for which the expected additional gain from
the second search falls below c, and remains below this threshold for the agents in the sequence

27By assumption, ω 6∈ Ω(c), and so min{q0, q1} < q(c). Therefore, the quality of the first action sampled by agent
1 is lower than q(c) with positive probability.
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moving after πKq̂ + 1.
By Assumption 2, there exists q̃ in the support of PQ such that: (i) PQ(q̃ < q < q(c)) > 0; (ii)

with positive probability, agent π1 does not sample another action if qs1
π1
≥ q̃, that is 1−FC(t∅(q̃)) >

0. Therefore, with positive probability, agent π1 samples first a suboptimal action with quality,
say, q, and does not search further. Now suppose that the first πKq̂ agents in the sequence all have
costs larger than t∅(q), and again note that this occurs with positive probability. By Lemma 4,
each of these agents will sample the suboptimal action with quality q first, and none of these agents
will search further. Therefore, all will take this suboptimal action. Agent πKq̂ + 1 also samples
this action first, and does not search further either because his expected additional gain from the
second search is smaller than c. Since the expected additional gain from the second search remains
smaller than c afterward, there will be no further search by agents in the sequence moving after
agent πKq̂ +1, contradicting that the probability of no agent in B̂(πk)∪{πk} sampling both actions
converges to zero. The desired result follows. �

B.5 Proofs for Section 6.2

Proof of Proposition 5

Proof of part (a). It is enough to construct a function φ̃ : R+ → R such that, for all n ∈ N,

Pσ
(
s1
n ∈ arg max

x∈X
qx

)
≥ φ̃(n) and 1− φ̃(n) = O

(
1

n
1

K+1

)
.

Consider the sequence of neighbor choice function (γn)n∈N where, for all n ∈ N, γn = n − 1.
Under the assumptions of the proposition, by Lemmas 7 and 13,

Pσ
(
s1
n+1 ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1
n ∈ arg max

x∈X
qx

)

+
(

1− Pσ
(
s1
n ∈ arg max

x∈X
qx

))2

FC

((
1− Pσ

(
s1
n ∈ arg max

x∈X
qx

))
t∅(qmax)

)
.

(54)

If the search cost distribution has polynomial shape, from (54) we have

Pσ
(
s1
n+1 ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1
n ∈ arg max

x∈X
qx

)

+ Lt∅(qmax)K
(

1− Pσ
(
s1
n ∈ arg max

x∈X
qx

))K+2

.

(55)

Now we can build on Lobel et al. (2009) (see their proof of Proposition 2) to construct the
function φ̃. Adapting their procedure to my setup gives that the function φ̃ we are looking for is

φ̃(n) = 1−
 1

(K + 1)Lt∅(qmax)K
(
n+K

)
 1

K+1

,

where K is some constant of integration (in the construction, φ̃ is found as the solution to an
ordinary differential equation).28

28To apply a construction in the spirit of Lobel et al. (2009), the right-hand side of (55) must be increasing in
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Proof of part (b). It is enough to construct a function φ̃ : R+ → R such that, for all n ∈ N,

Pσ
(
s1
n ∈ arg max

x∈X
qx

)
≥ φ̃(n) and 1− φ̃(n) = O

 1
(log n)

1
K+1

.
Under the assumptions of the proposition,

Pσ
(
s1
n+1 ∈ arg max

x∈X
qx

)
= 1
n

n∑
b=1

Pσ
(
s1
n+1 ∈ arg max

x∈X
qx | B(n+ 1) = {b}

)

= 1
n

[
Pσ
(
s1
n+1 ∈ arg max

x∈X
qx | B(n+ 1) = {n}

)
+ (n− 1)Pσ

(
s1
n ∈ arg max

x∈X
qx

)] (56)

because conditional on observing the same b < n, agents n and n + 1 have identical probabilities
of making an optimal decision. By Lemmas 4 and 7, and since the search cost distribution has
polynomial shape, we obtain that

Pσ
(
s1
n+1 ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1
n ∈ arg max

x∈X
qx

)

+ Lt∅(qmax)K

n

(
1− Pσ

(
s1
n ∈ arg max

x∈X
qx

))K+2

.

(57)

As for the proof of Proposition 5-part (b), we can now build on Lobel et al. (2009) (see their
proof of Proposition 2) to construct the function φ̃. Adapting their procedure to my setup gives
that the function φ̃ we are looking for is

φ̃(n) = 1−
 1

(K + 1)Lt∅(qmax)K
(

log n+K
)
 1

K+1

,

where K is some constant of integration (in the construction, φ̃ is found as the solution to an
ordinary differential equation). �

Proof of Proposition 6
In OIP networks, the result follows by combining Corollary 1 with Proposition 1 in MFP.

Next, suppose neighborhoods are independent with Qn(B(n) = {b}) = 1/(n− 1) for all b ∈ Nn.
By Lemma (4), in such network, each agent finds it optimal to start sampling from the action taken
by his unique neighbor. Thus, the probability of a suboptimal herd is

lim
n→∞

[
PΩ(q0 < q1)Pσ

(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n) | q0 < q1
)

+ PΩ(q0 > q1)Pσ
(
s1

1 = 1, ck > tk(q0) for all k ∈ B̂(n) | q0 > q1
)]

= lim
n→∞

1
2

[
Pσ
(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n) | q0 < q1
)

+ Pσ
(
s1

1 = 1, ck > tk(q1) for all k ∈ B̂(n) | q0 > q1
)]
,

(58)

Pσ(s1
n ∈ arg max x∈X qx). This is so under the assumption 0 < L < 2K+1

(K+2)t∅
(
q
)K maintained in the proposition. The

same remark applies to the right-hand side of (57) in the proof of part (b).
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where the equality holds because the qualities of the two actions are i.i.d. draws.
To begin, note that

Pσ
(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n) | q0 < q1
)

=
∫
q0
Pσ
(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n)
)
dPQ(q0 | q0 < q1).

(59)

Next, note that

tn+1(q0) = 1
n

n∑
b=1

Pσ
(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n+ 1) | B(n+ 1) = {b}, ab = 0, qs1
n+1

= q0
)
t∅(q0)

= 1
n
Pσ
(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n+ 1) | B(n+ 1) = {n}, an = 0, qs1
n+1

= q0
)
t∅(q0)

+ n− 1
n

Pσ
(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n)
)
t∅(q0),

from which we have

Pσ
(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n)
)

= n

n− 1
tn+1(q0)
t∅(q0)

−
Pσ
(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n+ 1) | B(n+ 1) = {n}, an = 0, qs1
n+1

= q0
)

n− 1 .

(60)

For notational simplicity, for all n ∈ N define

Pσ
(
E

0
n+1

)
:= Pσ

(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n+ 1) | B(n+ 1) = {n}, an = 0, qs1
n+1

= q0
)
.

Together, (59) and (60) give

lim
n→∞

Pσ
(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n) | q0 < q1
)

= lim
n→∞

∫
q0
Pσ
(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n)
)
dPQ(q0 | q0 < q1)

= lim
n→∞

n

n− 1

∫
q0

tn+1(q0)
t∅(q0) dPQ(q0 | q0 < q1)− lim

n→∞

1
n− 1

∫
q0
Pσ
(
E

0
n+1

)
dPQ(q0 | q0 < q1).

(61)

As 0 ≤
∫
q0
Pσ(E0

n+1)dPQ(q0 | q0 < q1) ≤ 1 for all n ∈ N,

lim
n→∞

1
n− 1

∫
q0
Pσ
(
E

0
n+1

)
dPQ(q0 | q0 < q1) = 0. (62)

Next, note that: (i) t1(q0) ≥ tn(q0) ≥ 0 for all n ∈ N and q0 ∈ Q; (ii) {tn(q0)}n∈N is a non-negative
and decreasing sequence, and so must have a limit; (iii) by Theorems 1 and 2, limn→∞ tn(q0) ≤ c

for all q0 ∈ Q. Therefore, by the dominated convergence theorem,

lim
n→∞

n

n− 1

∫
q0

tn+1(q0)
t∅(q0) dPQ(q0 | q0 < q1) = lim

n→∞

n

n− 1

∫
q0

lim
n→∞

tn+1(q0)
t∅(q0) dPQ(q0 | q0 < q1)

≤ c
∫
q0

1
t∅(q0)dPQ(q0 | q0 < q1)

= cEPQ

[
1

t∅(q0)

∣∣∣∣ q0 < q1

]
.

(63)
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By (61)–(63), we obtain

lim
n→∞

Pσ
(
s1

1 = 0, ck > tk(q0) for all k ∈ B̂(n) | q0 < q1
)
≤ cEPQ

[
1

t∅(q0)

∣∣∣∣ q0 < q1

]
(64)

The exact same reasoning establishes that

lim
n→∞

Pσ
(
s1

1 = 1, ck > tk(q1) for all k ∈ B̂(n) | q0 > q1
)
≤ cEPQ

[
1

t∅(q1)

∣∣∣∣ q1 < q0

]
. (65)

Since the qualities of the two actions are i.i.d. draws,

EPQ

[
1

t∅(q0)

∣∣∣∣ q0 < q1

]
= EPQ

[
1

t∅(q1)

∣∣∣∣ q1 < q0

]
. (66)

The desired result follow by combining (58) and (64)–(66). �

B.6 Proofs for Section 6.3

Preliminaries
To begin, I set the notation that will be used in the proofs of Propositions 7 and 8.

. Let S and S ′ be two collective search environments with identical state process (Q,FQ,PQ)
and search technology {(C,FC ,PC),R}. Suppose that the network topology of S is the complete
network and that in S ′ agents only observe their most immediate predecessor. Let σ ∈ ΣS and
σ′ ∈ ΣS′ . Suppose that agents break ties according to the same criterion in σ and σ′. In particular,
assume that agent 1 selects uniformly at random which action to sample first, and that all agents
sample the other action whenever indifferent at the second search stage.29 Suppose also that the
first action sampled by the first agent in σ and σ′, say x, has the same quality qx. Let δ ∈ (0, 1)
be the discount factor, and let the function t1 : Q → R+ be defined pointwise by t1(q) := t∅(q).30

Hereafter, q¬x is a random variable with probability measure PQ.

. The expected discounted social utility normalized by (1−δ) in equilibrium σ, denoted by Uσ(qx; δ),
is

Uσ(qx; δ) = qx + t1(qx)− (1− δ)
∞∑
n=1

δn
(

n∏
i=1

(
1− FC

(
ti
(
qx
))))

t1(qx)

− (1− δ)PQ(q¬x > qx)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx))

n−1∏
i=1

(
1− FC(ti(qx))

)
(67)

− (1− δ)PQ(q¬x ≤ qx)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx)).

To see this note that the first term is the quality of the first action sampled, and the second term
is the additional gain from the second unsampled action. From this, we subtract the sum of the
period n discounted gain from the unsampled action times the probability it was not sampled from
period 1 to n. Further, we subtract the expected discounted cost of search, which consists of two

29This assumption simplifies the notation, but does not qualitatively affect the results.
30Redefining function t∅ with t1 simplifies the notation in the following analysis.
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parts. The first part,

(1− δ)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx))

n−1∏
i=1

(
1− FC(ti(qx))

)
,

is the expected discounted cost of search when q¬x > qx. In this case, after agent n samples
both actions, action x is revealed to be inferior in equilibrium to all agents moving after agent n.
Therefore, no agent m > n will sample action x again. The second part,

(1− δ)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx)),

is the expected discounted cost of search when q¬x ≤ qx. In this case, after agent n samples both
actions, action ¬x is inferior in equilibrium, but not revealed to be so to the agents moving after
agent n. Therefore, all agents m > n with cm ≤ tm(qx) will sample action ¬x again.

. The expected discounted social utility normalized by (1 − δ) in equilibrium σ′, denoted by
Uσ′(qx; δ), is

Uσ′(qx; δ) = qx + t1(qx)− (1− δ)
∞∑
n=1

δn
(

n∏
i=1

(
1− FC

(
ti
(
qx
))))

t1(qx)

− (1− δ)PQ(q¬x > qx)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx))

n−1∏
i=1

(
1− FC(ti(qx))

)
− (1− δ)PQ(q¬x > qx)

∞∑
n=1

δnEPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

]
(68)

·
(

1−
n−1∏
i=1

(
1− FC(ti(qx))

))

− (1− δ)PQ(q¬x ≤ qx)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx)).

Uσ′(qx; δ) has the same interpretation as Uσ(qx; δ), except for the expected discounted cost of search
when q¬x > qx, which is now

(1− δ)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx))

n−1∏
i=1

(
1− FC(ti(qx))

)

+ (1− δ)
∞∑
n=1

δnEPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

](
1−

n−1∏
i=1

(
1− FC(ti(qx))

))
.

When agents only observe their most immediate predecessor, they also fail to recognize actions
that are revealed to be inferior in equilibrium by the time of their move. Therefore, differently
than in the complete network, even if agent n samples both actions and q¬x > qx, all agents m > n

with cm ≤ tm(q¬x) will now sample action x again. Since the quality of action ¬x is unknown (qx
is fixed, but q¬x is a random variable), the expected cost of this additional search is

EPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

]
.

. Now consider a third collective search environment S ′′ with the same state process and search
technology as in S and S ′, but where the network topology is any OIP network. Let σ′′ ∈ ΣS′′ ,
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and suppose indifferences are resolved in σ′′ according to the same tie-breaking criterion as in σ

and σ′. Assume also that the first action sampled by agent 1 in σ′′, say x, has the same quality qx
as the action sampled at the first search by agent 1 in σ, σ′. Let Uσ′′(qx; δ) denote the expected
discounted social utility normalized by (1− δ) in equilibrium σ′′. Again, assume the single decision
maker selects the first action to sample uniformly at random, and that he samples the second action
in case of indifference. The next lemma is immediate from the discussion in Section 6.3.

Lemma 14. For all qx ∈ Q and δ ∈ (0, 1), we have

Uσ(qx; δ) ≥ Uσ′′(qx; δ) ≥ Uσ′(qx; δ).

. Finally, denote with UDM(qx; δ) the expected discounted social utility normalized by (1− δ) that
is implemented by the single decision maker in any OIP network after sampling an action, say x, of
quality qx at the first search at time period 1. Again, assume that the single decision maker selects
the action to sample first uniformly at random at time period 1, and that he samples the second
action whenever indifferent. I refer to Section III.A. in MFP for the derivation of UDM(qx; δ). Since
the single decision maker’s problem is the same in all OIP networks, of which the complete network
is an example, the same analysis applies unchanged in my setting.

Proof of Proposition 7
The difference in average social utilities, Uσ(qx; δ)− Uσ′(qx; δ), is

(1− δ)PQ(q¬x > qx)
∞∑
n=1

δnEPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

]

·
(

1−
n−1∏
i=1

(
1− FC(ti(qx))

))
.

(69)

As (69) is positive for all δ ∈ (0, 1), that Uσ(qx; δ) > Uσ′(qx; δ) for all δ ∈ (0, 1) follows.
To show that limδ→1 [Uσ(qx; δ)− Uσ′(qx; δ)] = 0, we need to show that (69) converges to zero as

δ → 1. To do so, it is enough to argue that
∞∑
n=1

δnEPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

]

is finite. Notice that

0 ≤
∞∑
n=1

δnEPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

]
≤
∞∑
n=1

δnEPQ

[
tn(q¬x)FC(tn(q¬x)) | q¬x > qx

]
≤
∞∑
n=1

δn sup
q>qx

tn(q)FC(tn(q))

≤
∞∑

n=n̄+1
δn sup

q>qx
tn(q)FC(tn(q)) + n̄ sup

q>qx
t∅(q)

≈
∞∑

n=n̄+1
δn sup

q>qx

(
tn(q)

)2
fC(0) + n̄ sup

q>qx
t∅(q)
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≈
∞∑

n=n̄+1
δn sup

q>qx

(
t∅(q)

)2 1
fC(0)n2 + n̄ sup

q>qx
t∅(q),

where n̄ is large enough for tn(q) to be close to 0. Since ∑∞n=n̄+1
1
n2 and n̄ supq>qx t∅(q) are finite,

the desired result follows. �

Proof of Proposition 8
First, suppose c = 0. Wee need to show that limδ→1 Uσ′′(qx; δ) = limδ→1 UDM(qx; δ). By Proposition
7, limδ→1 Uσ(qx; δ) = limδ→1 Uσ′(qx; δ). Moreover, by Lemma 14, Uσ(qx; δ) ≥ Uσ′′(qx; δ) ≥ Uσ′(qx; δ)
Therefore, by the sandwich theorem for limits of functions,

lim
δ→1

Uσ′′(qx; δ) = lim
δ→1

Uσ(qx; δ). (70)

By Proposition 3 in MFP,
lim
δ→1

Uσ(qx; δ) = lim
δ→1

UDM(qx; δ). (71)

Then, by (70) and (71), and the uniqueness of the limit of a function, we have limδ→1 Uσ′′(qx; δ) =
limδ→1 UDM(qx; δ), which gives the desired result.

Now suppose that limδ→1 Uσ′′(qx; δ) = limδ→1 UDM(qx; δ). We need to show that c = 0. Since
the complete network is an OIP network, it follows that limδ→1 Uσ(qx; δ) = limδ→1 UDM(qx; δ). That
c = 0 immediately follows by Proposition 3 in MFP. �

B.7 Proofs for Section 6.4

Proof of Proposition 9
By an inductive argument as the one proving Lemma 13-part(i), each agent samples first the action
taken by his immediate predecessor. The result follows from the discussion in Section 6.4. �
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